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Abstract

This report summarizes a project in which the authors sought to develop and deploy: (i)
experimental techniques to elucidate the complex, multiscale nature of thermal transport
in particle-based materials; and (ii) modeling approaches to address current challenges in
predicting performace variability of materials (e.g., identifying and characterizing physical-
chemical processes and their couplings across multiple length and time scales, modeling infor-
mation transfer between scales, and statically and dynamically resolving material structure
and its evolution during manufacturing and device performance). Experimentally, several
capabilities were sucessfully advanced. As discussed in Chapter 2 a flash diffusivity capabil-
ity for measuring homogeneous thermal conductivity of pyrotechnic powders (and beyond)
was advanced; leading to enhanced characterization of pyrotechnic materials and properties
impacting component development. Chapter 4 describes sucess for the first time, although
preliminary, in resolving thermal fields at speeds and spatial scales relevant to energetic
components. Chapter 7 summarizes the first ever (as far as the authors know) application
of TDTR to actual pyrotechnic materials. This is the first attempt to actually characterize
these materials at the interfacial scale. On the modeling side, new capabilities in image
processing of experimental microstructures and direct numerical simulation on complicated
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structures were advanced (see Chapters 3 and 5). In addition, modeling work described in
Chapter 8 led to improved prediction of interface thermal conductance from first principles
calculations. Toward the second point, for a model system of packed particles, significant
headway was made in implementing numerical algorithms and collecting data to justify the
approach in terms of highlighting the phenomena at play and pointing the way forward in de-
veloping and informing the kind of modeling approach oringinally envisioned (see Chapter 6).
In both cases much more remains to be accomplished.
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Chapter 1

Introduction

The complex response of disordered, inhomogeneous and heterogeneous materials to me-
chanical and thermodynamic loads results from microscopic dynamical/stochastic processes
occurring over multiple length and time scales. As a first step toward increased complexity
of material response, consider the difference between an homogeneous material and a dis-
ordered, inhomogeneous material. Inhomogeneity of the material structure can be viewed
as a variability of local material properties. However, the randomness or disorder of the
structure complicates the effect of the inhomogeneity; leading to variation of local properties
across scales. This can be seen in random, inhomogeneous materials where at large lengths
a Central Limit-like or ensemble averaging property leads to a single, effective bulk, homog-
enized material property different from the constituent homogeneous material [6, 89, 76].
On intermediate length scales properties can vary significantly between these two limits [67].
Property variation across scales due to structural disorder, in turn, can lead to significant
variability in the performance of a device or component. Current challenges in predicting
performace variability of materials include: (i) identifying and characterizing physical and/or
chemical processes, and their couplings across multiple length and time scales; (ii) model-
ing information transfer between scales; (iii) statically and dynamically resolving material
structure and its evolution during manufacturing and device performance. Overcoming these
challenges to create engineered solutions requires multi-scale materials theory/modeling and
experimental discovery and characterization.

Not surprisingly, actual materials of interest to Sandia are often far from ideal and ho-
mogeneous. Material inhomogeneity and heterogeneity arise due to the presence of defects,
impurities, grain boundaries and interfaces, poly-crystallinity, multiple constituent materials
and phases along with associated microstructure, etc. These present themselves on a hierar-
chy of scales. Hence, the resulting variability of properties and related dynamical transport
processes across length and time scales creates significant challenges to predictive modeling
and experimental characterization for applications such as material failure (ductile or brittle)
and initiation and ignition of energetic materials and beyond.

In this project, we sought to develop and deploy: (i) experimental techniques to elucidate
the complex, multiscale nature of thermal transport in particle-based materials; and (ii)
modeling approaches to address the aforementioned challenges. This report summarizes
the work involved in these efforts. Specifically, we began to explore energy transport in
particle-based composite heterogeneous materials with a view toward multi-physics coupling
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to mass transport and chemistry (i.e., hot-wire pyrotechnic applications). Key to predicting
the performance of pyrotechnic devices is accurately determining the heat pulse to and its
distribution in the powder, particularly near the bridgewire-powder interface. Our goal was
to build on past sucesses validating homogenized, asymptotic models [24] by accounting for
heat flow which departs from classical models based on the heat equation (i.e., Fouriers Law)
due to inhomogeneity in the heat transport arising from particle-scale microstructure (see
Figure 4.1). Evidence for this “anomalous diffusion can be found in experimental results
[25]. Additionally, it was anecdotally known that particle size, size distribution and particle
morphology matter in determining the bulk properties of the powders of interest, we aimed
at quantifying this variability (see Chapters 2) and understanding the sub-particle material
structure, particle morphology, and compostite microstructure connections as they relate to
thermal transport in pressed powder pellets (see Chapters 3 and 5).

One key advance sought and challenge addressed was connecting the temporal response
with the microstructural inhomogeneity and building nonlocal models which capture the
effect of inhomogeneity consistent with the chosen scale resolution, ∆t and ∆x. While much
remains to be done here, some progress was made toward this end in Chapter 6.

The experimental component of the proposed work had two main thrusts: (i) microstruc-
ture characterization; and (ii) transport measurements probing scale-dependent behavior.
Particularly challenging is, in-stitu, real-time, simultaneous experimental resolution of mi-
crostructure and the relevant transport fields on a broad range of scales. For multiple scale
systems, this requires not just the normal matching the field-of-view to resoution (or, sample
period to sample frequency) ratio of the experimental measurement technique with the scale
of the sytem/processes of interest, but also requires techniques with large field-of-view to res-
olution ratios or mulitple measurement techniques with overlapping resolutions to cover the
range of relevant scales. We pursued development of experimental capabilities for discovering
the range of compositions and preparations of pressed pyrotechnic powder pellets for which
anomalous diffusion may be detectable – i.e., we wanted to find experimental techniques that
matched the relevant length and time scales. Once this is achieved, then thermal transport
in particle systems spanning the detectable range can be measured to provide validation
data. These experiments were to highlight anomalous transport mechanisms in pyrotechnic
powders and provide the groundwork for the incorporating microstructural effects into the
scale-consistent models (see Chapter 4).

Moving beyond the question of anomalous thermal diffusion at the particle-microstructural
scale we desired to investigate and extend models to capture material dependent thermal
transport at the sub-grain scale where interfaces (contact resistances), grain boundaries, dis-
location, impurities, and other crystal defects are relevant. There was a significant element
of experimental discovery at this level (see Chapter 7). Particular focus was given to the
role of interfaces (e.g., bridgewire-powder, oxidizer-metal) and atomistic models of contact
resistance (see Chapter 8).
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Figure 1.1. Heat flux through a pack of bi-disperse parti-
cles.
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Chapter 2

Measuring Bulk, Homogenized
Thermal Conductivity of Pressed
Pellets via Flash Diffusivity

As a first step toward a “top-down” characterization of the variability of particulate-based
energetic materials, this chapter details a fast, accurate method for assessing their macroscale
thermal properties. A previous method for this purpose used much more material for each
sample tested and was more difficult to perform; although it gave more detailed information
on the internal thermal state of the sample [24]. The newly established capability is useful for
quantifying the thermal conductivity and associated uncertainty in pressed powder pellets at
the bulk or macro-scale. In particular it was found that there are significant differences ( 18%)
in the thermal diffusivity of two similar powders. The main difference between the powders
being the particle size distributions and noticeably different particle morphologies of one of
the components (Ti) in the mix used to press the pellets. These differences can be attributed
to the origins of the feedstock; differing manufacturing processes and environmental histories
led to the aforementioned variability.

Specifically, the flash technique is used to measure the thermal diffusivity and specific
heat of titanium potassium perchlorate (TKP) input powder (33wt% Ti - 67wt% KP) with
Ventron supplied titanium particles, TKP input powder (33wt% Ti - 67wt% KP) with ATK
supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium
subhydride potassium perchlorate (THKP) (33wt% TiH1.65 - 67wt% KP) at at 25oC. The
influence of density and temperature on the thermal diffusivity and specific heat of TKP
with Ventron supplied titanium particles is investigated.

The flash method can be used to determine the thermal diffusivity and specific heat of a
material following ASTM Standard E1461-13 [1]. The method involves exposing one side of a
sample to a high intensity, short duration pulse of light. The temperature rise on the opposite
side of the sample is measured with a thermocouple or infrared detector. The measured back
surface response is used to determine the thermal diffusivity and, through comparisons to
a known reference, the specific heat. A commercial Netzsch NanoFlash R© LFA 447 machine
was approved for thermal diffusivity and specific heat measurements on energetic materials
in the Explosives Components Facility. The NanoFlash R© machine comes with software for
the execution of the experiment and analysis of the data. The numerics of the Proteus R©
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LFA analysis program [65] are not available for scrutiny. To provide more confidence in the
measured results and corresponding uncertainties, a MATLAB R© [57] program for analyzing
the raw voltage data was developed.

The MATLAB R© analysis program works on the assumption that the recorded back sur-
face voltage is directly proportional to the temperature. Additionally, each individual flash,
or shot, is assumed to be essentially identical given the same NanoFlash R© machine param-
eters. The analysis code loads in the NanoFlash R© data files and calculates the thermal
diffusivity using either the Parker [69] or Cowan [18, 19] model. Data for a reference ma-
terial can then be loaded for the determination of the material’s specific heat. Below is a
description of the thermal diffusivity and specific heat calculations along with the associated
error approximations.

The thermal diffusivities and specific heats of the following materials are presented.

• Titanium potassium perchlorate (TKP)

– TKP input powder (33wt% Ti - 67wt% KP) with Ventron titanium particles
(Ventron TKP-IP)

∗ At densities ranging from 2.0 to 2.3 g/cm3 at 25 oC

∗ At a density of 2.1 g/cm3 and temperatures ranging from 25 to 250 oC

– TKP input powder (33wt% Ti - 67wt% KP) with ATK titanium particles (ATK
TKP-IP) at a density of 2.1 g/cm3 at 25oC

– TKP output powder (41wt% Ti - 59wt% KP) (TKP-OP) at a density of 2.5 g/cm3

at 25oC

• Titanium subhydride potassium perchlorate (33wt% TiH1.65 - 67wt% KP) (THKP) at
a density of 2.3 g/cm3 at 25 oC

The specific heats are reported using both pocographite and Pyroceram R© as the reference
material. Determining the specific heat with the flash technique is prone to errors. Its
accuracy relies on identical experimental parameters (i.e. temperature, flash voltage, flash
duration, filter, masks, and coatings) and thermal properties between the sample and refer-
ence.

Thermal Diffusivity Calculations

Parker Model

A simple adiabatic model for determining a material’s thermal diffusivity was proposed
by Parker et al. [69]. The Parker model assumes that the normalized voltage, V , can be
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represented by the following equations.

V = 1 + 2
∞∑

n=1

(−1)n exp(−n2ω) (2.0.1)

ω =
π2αt

L
(2.0.2)

Here, α is the thermal diffusivity, t is time, and L is the sample thickness. At the half rise
time, V0.5, T = 0.5 and ω is equal to 1.38785. The thermal diffusivity directly follows.

α =
1.38785L2

π2t0.5

(2.0.3)

The MATLAB R© code implements the Parker model by first determining the zero time
of the voltage record. The NanoFlash R© machine has an inherent delay between the start of
voltage recording and the flash of the Xenon lamp. This delay is related to the parameters
of the experiment and is extracted from the NanoFlash R© data file. The voltage record
before the zero time is fit to a linear polynomial in time. This linear fit is applied to the
entire voltage record to compensate for possible sensor drift during the measurement. After
this correction, the voltage record is normalized. Like all raw data, the recorded signal has
inherent noise. This is is seen in the raw data obtained from a Ventron TKP-IP pressed pellet
shown in Figure 2.1. To estimate the maximum voltage, the MATLAB R© code smooths the
raw data and locates the beginning of the voltage rise. The initiation of the rise was chosen
as 5% of the maximum value for easy identification in signals with high noise. To avoid
anomalies caused by bleed through of the flash, the first 1 ms after the zero time is excluded
when locating the voltage rise. Flash bleed through can be an issue for porous samples.

After locating the rise point, the raw data after the rise point is fit to a double exponential
equation. This fitting was done in MATLAB R© with the default algorithm for the fit command
[56], which is the Levenberg-Marquardt method [51, 55]. This is the algorithm used to
determine the coefficients and associated error for all curve fitting in this program.

T = C1 exp(C2t) + C3 exp(C4t) (2.0.4)

The double exponential function was chosen since it provides an excellent fit to the raw data
as seen in Figure 2.2. The time and amplitude of the maximum value of this curve fit is then
determined.

tmax =
1

C4 − C2

ln

(
−C1C2

C3C4

)
(2.0.5)

Tmax = C1 exp(C2tmax) + C3 exp(C4tmax) (2.0.6)

The raw data is normalized by Tmax and fit to Equation 2.0.1 with the number of terms in
the series specified by the user. From the value of ω obtained, α is calculated from Equation
2.0.3.

An example of the Parker model fit to the Ventron TKP-IP pellet using 10 terms is shown
in Figure 2.3. The Parker model poorly matches the peak and late time voltages, due to the
adiabatic nature of the model. Without incorporating heat losses, the late time voltages are
bound to a single value and cannot decrease like the measured response.
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Figure 2.1. Raw data from a Ventron TKP-IP pellet.

Uncertainty Analysis

Since the raw data was normalized with an analytical fit, there is an inherent uncertainty
in each of the coefficients. This uncertainty will propagate through the calculation effecting
the certainty to which α is known. This error is determined through the use of the standard
error equation for Y = f(xi) [5].

δY =

√√√√∑
i

(
∂Y

∂xi

δxi

)2

(2.0.7)
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Figure 2.2. Double exponential fit to the Ventron TKP-IP
pellet raw data.

Using the double exponential fit for the raw voltage (Equation 2.0.4), the following partial
derivatives are determined for Tmax.

∂Tmax

∂C1

= exp(C2tmax) (2.0.8)

∂Tmax

∂C2

= C1tmax exp(C2tmax) (2.0.9)

∂Tmax

∂C3

= exp(C4tmax) (2.0.10)

∂Tmax

∂C4

= C3tmax exp(C4tmax) (2.0.11)

∂Tmax

∂tmax

= C1C2 exp(C2tmax) + C3C4 exp(C4tmax) (2.0.12)

(2.0.13)
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Figure 2.3. Parker model fit to the Ventron TKP-IP pellet
raw data using 10 terms.

The uncertainties in C1 through C4 (i.e. δCi) are obtained from the MATLAB R© fit. The
uncertainty in tmax is found using the partial derivatives of Equation 2.0.5.

∂tmax

∂C1

=
1

C1(C4 − C2)
(2.0.14)

∂tmax

∂C2

=
1

C2(C4 − C2)
+

1

(C4 − C2)2
ln

(
−C1C2

C3C4

)
(2.0.15)

∂tmax

∂C3

=
−1

C3(C4 − C2)
(2.0.16)

∂tmax

∂C4

=
−1

C4(C4 − C2)
− 1

(C4 − C2)2
ln

(
−C1C2

C3C4

)
(2.0.17)

(2.0.18)

Using these partial derivatives and the uncertainties in each quantity, δTmax is calculated
using Equation 2.0.7. The error in the normalized voltage, δV , as a percentage is the
following.

δV

V
=

δTmax

Tmax

(2.0.19)

The fit of the Parker model to the normalized voltage leads to an uncertainty in ω. Using
the uncertainty in V and ω, a 3×3 matrix is developed of potential half rise times, δt0.5. This
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consists of every iteration using the upper, lower, and median values of ω and V. Half the
difference between the maximum and minimum half rise time in the matrix is used to define
the associated uncertainty, since it is a more conservative error estimation than the standard
deviation. The uncertainty in α, δα, is found using the partial derivatives of Equation 2.0.3
and the error associated with each quantity.

∂α

∂t0.5

=
−1.38785L2

π2t20.5

(2.0.20)

∂α

∂L
=

2.7757L

π2t0.5

(2.0.21)

(2.0.22)

In these calculations, the uncertainties represent the standard deviation. The 95% confidence
interval is obtained by multiplying the standard deviation by 1.96.

Cowan Model

The model proposed by Cowan [18, 19] to determine the thermal diffusivity with the
flash technique accounts for radiation and convective losses at the sample surfaces. These
loses lead to the decrease in voltage seen in the raw data of Figure 2.1 at later times. This
correction makes the Cowan model more appropriate for determining the thermal diffusivity
of most samples.

If the front of a sample is exposed to a high-intensity, short duration pulse of energy, the
temperature response, Θ(0, t), at the back of the sample can be described with the following
relation.

LcpρΘ(0, t)

Q
= 2

∞∑
n=0

y2
n

Dn exp
(

αy2
nt

L2

) (2.0.23)

Here, L is the sample thickness, cp is the specific heat, ρ is the density, Q is the total energy
per unit area, and α is the thermal diffusivity. The terms yn are the solution of the following
equation over the interval nπ < y < (n + 1)π.

cot y =
y

a
− b

ay
(2.0.24)

In this equation, the terms a and b relate to the energy lost at the irradiated, c0, and back
surfaces, cL.

a = L(c0 + cL) = Lc0(1 + r) (2.0.25)

b =
ra2

(1 + r)2
(2.0.26)

r =
cL

c0

(2.0.27)
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The term Dn is then defined as the following.

Dn = yn sin(yn)

(
1 + a− 2b

a
+

y2
n

a
+

b

y2
n

+
b2

ay2
n

)
(2.0.28)

This set of equations can be solved to a high degree of accuracy with a rough knowledge
of r by taking two ratios of the temperature response at different times [19]. This results
from the thermal diffusivity being relatively insensitive to r for a values below 5 as seen in
Figure 2.4. Typically, the following ratios are chosen.

R5 =
Θ(0, 5t0.5)

Θ(0, t0.5)
(2.0.29)

R10 =
Θ(0, 10t0.5)

Θ(0, t0.5)
(2.0.30)

(2.0.31)

Since samples in the flash method usually have similar graphite coatings and masks on the
irradiated and back surfaces, r is assumed to be unity. Variations in r (i.e. from 0 to 100)
were found to alter the calculated thermal diffusivity in a Ventron TKP-IP pellet by less than
0.2%. Errors corresponding to uncertainties in the value of r are assumed to be included in
the conservative error estimations described in Section 2.

Figure 2.4. Variation of the thermal diffusivity as a
changes for various r values [19]. For a values up to 5, the
thermal diffusivity is relatively insensitive to changes in r.

Calculating the thermal diffusivity using the Cowan model begins with fitting the raw
data to a double exponential function (Equation 2.0.4) and normalizing the curve by the
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maximum voltage identical to that done for the Parker model (Section 2). This double
exponential fit is used to find V at 1, 5, and 10 half times. The value determined at 1
half time is used to get a rough estimate of the thermal diffusivity using the Parker model
(Equation 2.0.3). This rough approximation of α is used as an initial guess to expedite fitting
the Cowan model to the data.

Cowan suggests that an adequate approximation of a can be determined by assuming the
energy is deposited as a step function [18]. This effectively leads to analyzing the drop in
normalized voltage due to heat loss. Taking the natural logarithm of the normalized voltage,
V , for all time after the peak, a curve is generated that asymptotically approaches a straight
line. This curve is shown in Figure 2.5. The second half of this curve is fit to a linear
equation, F (0, t). The value of this linear fit at tmax provides an estimation of a.

F (0, tmax) ∼= 1 +
a

6
(2.0.32)

This result is only valid if the first term in Equation 2.0.23 at tmax, V0(0, tmax), differs from
unity by around 0.08 [18] and is a very crude first approximation.

Figure 2.5. Plot of the natural logarithm of the normal-
ized voltage, V . The second half of ln(V ) is fit to a linear
polynomial, the value of which at tmax provides a rough ap-
proximation of a.

With this approximation of a, the values of yn and Dn are found. Equation 2.0.23 is
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then used to find the thermal diffusivity, α that matches the temperature ratios at R5 and
R10. The α given by both ratios should match. However, given the crude nature in which a
was approximated, this is not the case. The MATLAB R© code iterates to obtain an α that
satisfies both ratios. Figure 2.4 shows that, as a increases, α decreases. A refined α value is
then defined as the average of the values obtained from R5 and R10 and it is compared to the
previous approximation. If the new value of α is lower than the previous one, a is increased.
If the new value is higher, a is decreased. This new a value is then used to recalculate α.
The process repeats until α converges to a desired tolerance. The MATLAB R© code changes
the a value by 1% for each iteration. There is no strong reason for this magnitude of change
other than it seemed to give a convergence of α to within a tolerance of 0.1% in around
50 iterations. If the values doesn’t converge to the desired tolerance after 60 iterations, the
code resets to the initial approximation of a and iterates until the best agreement possible
is reached. This is typically within 5% and is necessary for high-noise signals. A Cowan
model fit with 10 terms to the Ventron TKP-IP pellet is shown in Figure 2.6. The Cowan
model is seen to fit the raw data very well, providing a much better estimation of the thermal
diffusivity than the Parker model.

Figure 2.6. Cowan model fit to the raw data for a shot on
a Ventron TKP-IP pellet using 10 terms. The Cowan model
is seen to fit the experimental data much better than the
Parker model due to its incorporation of heat losses.
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Uncertainty Analysis

Since the raw data was normalized in the same method as the Parker model, the error
in Vmax is accounted for in the same way as in Section 2. This same procedure is extended
to find the errors in V , at 1, 5 and 10 half times, which provide the errors in R5 and R10.
Equation 2.0.23 also relies on the pellet thickness, which also has a measured error. Using
the errors in R5, R10, and L, a 6× 3 matrix is developed. The first 3× 3 section corresponds
to α calculated using R5 ± δR5 and L ± δL, while the second corresponds to that using
R10 ± δR10 and L ± δL (i.e. all iterations of the maximum, minimum, and median values
of each parameter). Once again, the error recorded in α is half the difference between the
maximum and minimum values obtained in this 6× 3 matrix.

Specific Heat Calculations

The specific heat of a sample can be determined with the flash method through compar-
ison to a known reference sample. The heat applied to a sample can be expressed with the
following.

Q = mcp∆T (2.0.33)

If the reference and sample undergo the same flash exposure and have the same absorption
coefficient, the heat imparted to them can be set equal. The specific heat of the sample can
then be related to the specific heat of the reference.

cpsample
=

mref

msample

∆Tref

∆Tsample

cpref
(2.0.34)

If the sample and reference have the same flash parameters (i.e. temperature, flash
voltage, flash duration, filter, masks, and coatings), Equation 2.0.34 can be rewritten as the
following.

cpsample
=

Tadbref

Tadbsample

Asample

Aref

ρref

ρsample

Lref

Lsample

cpref
(2.0.35)

Here, Tadb is the adiabatic temperature rise, which corresponds to the maximum temperature
of the reference and sample assuming no heat losses. To ensure a proper comparison, this
ratio is multiplied by the ratio of the electronic gain factors used in the measurement of each,
Asample and Aref . If identical masks are used, the area of the sample and reference are the
same and the mass term reduces to ρL.

To use Equation 2.0.35, the adiabatic temperature rise must be determined. This is done
in the MATLAB R© routine using both the Cowan and Parker models. For both the sample
and the reference, the half rise time, t0.5, and thermal diffusivity, α, are calculated using the
Cowan model, since it accounts for heat loses. These half rise times are used to calculate the
normalized voltage, VCt0.5

, from the double exponential fit. This normalized voltage, VCt0.5
,

will be below the 0.5 expected under adiabatic conditions. The ratio of 0.5 to VCt0.5
provides

33



an estimate of the fraction of heat dissipated in the first half of the rise. The fraction of heat
lost in the first half of the rise is assumed to be identical to that lost in the second half of
the rise. The recorded voltage at the half rise time is multiplied by this ratio and doubled to
provide an estimate of the expected maximum voltage rise given adiabatic conditions, Tadb.
From this approximation, cp is calculated from Equation 2.0.35.

Uncertainty Analysis

The error associated with the adiabatic temperature rise follows from the error method
used for finding the maximum voltage and half rise time outlined previously in Section 2.
Errors in tmax is found with the Cowan model, as described in Section 2. The error in VCt0.5

found with the exponential fit follows that for Vmax outlined in Section 2. The error of cp

for the sample is then a simple application of the standard error equation for all variables in
Equation 2.0.35.

It should be noted that specific heats found with the flash method are prone to errors
and should be used with caution. Errors in the specific heat of the reference will inherently
cause errors in the specific heat of the sample. Identical experimental parameters (i.e.
temperature, flash voltage, flash duration, filter, masks, and coatings) and similar thermal
properties between the sample and reference are also necessary. Care must be taken when
using such data.

Material Properties

Various formulations of titanium and potassium perchlorate (KP) with differing hydride
levels were measured using the flash technique.

• Titanium potassium perchlorate input powder (33wt% Ti - 67wt% KP) with Ventron
Ti particles (Ventron TKP-IP)

• Titanium potassium perchlorate (33wt% Ti - 67wt% KP) with ATK Ti particles (ATK
TKP-IP)

• Titanium potassium perchlorate output powder (41wt% Ti - 59wt% KP) (TKP-OP)

• Titanium subhydride potassium perchlorate (33wt% TiH1.65 − 67wt% KP) (THKP).

The various TKP and THKP formulations were pressed into pellets. The properties of which
are given in Table 2.1. The uncertainty in the sample weights are taken as the uncertainty of
the scale used. The uncertainty of the height are obtained from 4 independent measurements
at different locations on the sample. The sample was made with a high precision die, so
negligible error is assumed for the diameter. The uncertainty in the density was obtained
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from the standard error equation (Equation 2.0.7). All uncertainties listed in this report
represent the 95% confidence interval.

There are several points to make from Table 2.1. The Ventron TKP-IP was pressed into
pellets with roughly 68, 71, 76, and 79% theoretical maximum density (TMD) in order to
study the change in thermal properties of TKP with pellet density. The Ventron TKP-IP was
chosen for this study since it was easier to handle once pressed than the ATK TKP-IP. The
density range represents the highest TMD capable of the press and the lowest TMD thought
to provide robust enough samples to measure. Two distinct pellet heights of the ATK TKP-
IP were also pressed. This was done to ensure that all measurements were representative of
the bulk material. The ATK TKP-IP was brittle once pressed. As a result, only a single 1
mm tall ATK TKP-IP pellet survived for testing.

Experimental Arrangement

The thermal diffusivity of each TKP and THKP pellet was measured at least 5 times at
25 oC. In addition, Ventron TKP-IP pellets IP-V-1-71-1 and IP-V-1-71-2 were measured at
50, 100, 150, 200, and 250 oC to understand the change in thermal diffusivity and specific
heat with temperature. Measurements were stopped at 250 oC for two reasons: the crystal-
lographic phase transition in KP at around 300 oC [41], and complications with adherence
of the graphite coating at higher temperatures. The NanoFlash R© machine allows for a 0.5
oC deviation from the specified temperature with a 0.1 oC accuracy of the reading. This
is the source of the temperature error reported in the experimental results. The samples
were coated with graphite (∼ 5 microns) to ensure uniform and thorough absorption of the
Xenon flash energy. The flash was run with 270 V for the 1 mm tall pellets and 292 V for
the 3 mm tall pellets. The higher voltage for the 3 mm tall pellets was done to improve the
signal-to-noise ratio. Every shot had no filter (NanoFlash R© filter option 5). The temperature
rise on the back side of each pellet was measured with a InSb IR sensor cooled with liquid
nitrogen. In all tests, the flash duration (∼ 250 µs - NanoFlash R© pulse option “Medium”
for the 1 mm tall pellets and ∼ 450 µs - NanoFlash R© pulse option “Long” for the 3 mm
tall pellets) is significantly less than the half rise time (∼ 300 ms for 1 mm tall pellets and
∼ 5000 ms for 3 mm tall pellets), so no correction for the pulse duration is needed [2]. The
NanoFlash R© machine parameters are all listed in Table A.1.

Experimental Results

Thermal Diffusivity

All shots on the TKP and THKP pellets were analyzed using the Cowan model [18,
19], since it accounts for radiative and conductive heat losses. The Cowan model can be
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implemented with any number of terms. Table 2.2 shows the computed thermal diffusivity
for Ventron TKP-IP pellet IP-V-1-71-1 as the number of terms varies. Convergence occurs
with only 3 terms. However, for the results presented here, 10 terms were used to ensure
convergence in all cases.

The thermal diffusivity and accompanying error for each shot on the TKP and THKP
pellets are presented in Table A.2. The average thermal diffusivity and accompanying error
for each pellet at 25 oC along with the average thermal diffusivity for each TKP and THKP
formulation (i.e the average of all pellets) are listed in Table 2.3. For most TKP and THKP
formulations, the sample-to-sample variation is small (< 5%). With such repeatability in the
thermal diffusivity it is assumed that 1 mm is representative of the bulk material response.
The exception is TKP-OP. Pellet OP-1-80-1 has a significantly lower thermal diffusivity than
pellets OP-1-80-2 or OP-1-80-3. While the exact reason for this unknown, it could be tied to
the lower density of pellet OP-1-80-1. Further studies on the change in thermal diffusivity
with density need to be performed on TKP-OP to verify this hypothesis.

A comparison of the TKP-IP pellets at around 71% TMD shows a large difference between
the Ventron and ATK formulations (∼ 18%). This difference may be tied to the different
particle morphologies of the Ti or unique powder compressibility causing alternate density
gradients. Dependence of thermal diffusivity on thicknesses is also observed in ATK TKP-IP.
The 1 mm tall ATK pellet has a ∼14% higher thermal diffusivity than the 3 mm tall pellets.
The suggestion that the 1 mm pellet is not representative of the bulk material response is
an unlikely explanation of this difference. A change in the density gradient of the pellet due
to the increased thickness may be the more likely. Further studies are necessary to find the
exact cause.

Effect of Density on Thermal Diffusivity

Table 2.3 shows an upward trend in thermal diffusivity with density in the Ventron
TKP-IP at 25 oC. This trend is fit to a quadratic equation using the data from all four
samples, and is shown in Figure 2.7. The data suggests that the thermal diffusivity remains
relatively constant at lower densities before increasing dramatically. This trend could be tied
to a critical connectivity between Ti particle, which could be investigated with stereological
methods. Since the 2.0 g/cm2 pellets proved to be sturdy, pellets at even lower densities
could be pressed to further investigate the lower density regime.

Effect of Temperature on Thermal Diffusivity

Since the Ventron TKP-IP was measured at various temperatures, it is important to
consider the effect of thermal expansion. With the coefficient of thermal expansion, CTE,
the thickness and density of a material as a function of temperature can be described with
the following.

t(T ) = to(1 + (T − 25))CTE (2.0.36)
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Figure 2.7. Thermal diffusivity as a function of density for
the Ventron TKP-IP at 25 oC. The data shows an upward
trend in thermal diffusivity with increasing density, which is
fit to a quadratic equation.

37



ρ(T ) =
m

Vo(1 + 3(T − 25)CTE)
(2.0.37)

Here, to is the initial thickness, Vo is the initial volume, and T is the temperature measured
in Celsius. Taking the CTE to be as high as 15× 10−6 C−1 leads to a negligible change (i.e.
< 0.7%) in the measured thermal diffusivity and specific heat of the Ventron TKP at 250
250 oC. For this reason, the effects of thermal expansion are considered to be included in the
conservative error estimations reported.

The flash method relies on exposing one side of the sample to a high intensity short
duration pulse of light. KP undergoes a crystallographic phase transition at roughly 300
oC [41]. It is important to consider the amount of KP that has transformed during the
measurement to ensure the results are representative of nascent TKP. The amount of KP
transformed can be estimated by modeling the sample’s temperature distribution assuming
all the laser energy is immediately and uniformly absorbed into a thin layer of the material
[69].

T (x, t) =
Q

ρcpL

[
1 + 2

∞∑
n=1

cos
(nπx

L

) sin
(

nπg
L

)(
nπg
L

) exp

(
−n2π2

L2
αt

)]
+ To (2.0.38)

Here, Q is the radiant energy of the laser pulse in J/cm2, ρ is the sample density in g/cm3,
cp is the sample specific heat in J/gK, L is the sample thickness in cm, g is the absorption
layer thickness in cm, α is the samples thermal diffusivity in cm2/s, and To is the initial
temperature of the sample.

As a rough approximation, all the energy is assumed to instantly and uniformly be
absorbed into a 5 micron graphite layer. Ideally, a two phase model should be used, since the
above equation assumes a homogeneous material. However, this simplification will suffice as a
rough estimate. The NanoFlash R© machine is reported to have a maximum energy deposition
of 3 J/cm2 [64]. Since the Ventron TKP was run with a 270 V flash and a duration of ∼ 250
µs, the radiant laser energy is assumed to be just 2 J/cm2. The sample density, thickness,
and thermal diffusivity are all taken from the measured values. A mass average value is
taken for the specific heat, which is discussed in Section 2. Using these values and 10 terms
in the summation, the fraction of the sample having transformed KP at each temperature
measured can be calculated and is plotted in Figure 2.8. It can be seen that even up to
290 oC less than 10% of the TKP-IP has transformed. These results are the same order of
magnitude as previous estimates using a radiant heat flux boundary condition [16]. Based
on both of these approximations, it is assumed that the amount of KP transformed in the
measurements can be neglected and that the results are representative of nascent TKP.

The average thermal diffusivity for Ventron TKP-IP at each temperature measured is
listed in Table 2.4. For both IP-V-1-71-1 and IP-V-1-71-2, the thermal diffusivities show
a similar downward trend in thermal diffusivity with temperature. This trend is fit to a
quadratic equation using the data from both samples, and is shown in Figure 2.9.
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Figure 2.8. Fraction of TKP-IP transformed as a function
of temperature. The results show that up to 290 oC less than
10% of the TKP-IP has transformed
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Figure 2.9. Thermal diffusivity as a function of temper-
ature for both Ventron TKP-IP samples. The data shows a
downward trend in thermal diffusivity with increasing tem-
perature, which is fit to a quadratic equation.
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Specific Heat

The specific heat of a sample can be found with the flash technique through compar-
isons to a reference material. The accuracy of this method relies on identical experimental
parameters (i.e. temperature, flash voltage, flash duration, filter, masks, and coatings) and
thermal properties between the sample and reference. ASTM Standard E1461-13 [1] also
requires a short time lapse between the sample and reference measurements. Specific heats
found using reference measurements with delays ranging from minutes to weeks of the sam-
ple gave essentially identical results (i.e the errors overlapped). This supports the reported
repeatability in NanoFlash R© Xenon flash[64]. As a result, no effort was made to have short
delays between reference and sample measurement, with some being as much as weeks apart.

The NanoFlash R© machine at Sandia has two reference materials: pocographite and
Pyroceram R©. While the TKP and THKP formulations have identical machine parame-
ters to the reference materials, they do not have similar thermal properties. Care should be
taken when using the specific heats reported here.

The specific heats measured for each shot on the TKP and THKP pellets using pocographite
are given in Table A.3, while those using Pyroceram R© are given in Table A.4. The average
response at 25 oC for each TKP and THKP formulation using pocographite are listed in Ta-
ble 2.5, while those found using Pyroceram R© are in Table 2.6. To calculate the specific heat,
each pellet was compared to the average of 5 shots on the reference materials at identical
machine parameters and temperatures. There is an observed variability in specific heat with
reference material. Specific heats found with pocographite have ∼ 15% higher value when
compared to those found with Pyroceram R©. This result is related to the differing thermal
properties of pocographite and Pyroceram R©. This variability highlights the importance of
similar parameters between the sample and reference. The differing thermal and physical
properties between the reference and sample make measuring the specific heat of a sample to
a high degree of accuracy difficult. These considerations must be kept in mind when using
this data.

Effect of Density on Specific Heat

The change is specific heat as a function density at 25 oC for the Ventron TKP-IP
pellets is presented graphically Figure 2.10. The data shows a shallow downward trend in
specific heat with density that is fit to a linear equation. Since the specific heats found
with pocographite are a consistent percentage off from those found with Pyroceram R©, both
exhibit shallow slopes.

Effect of Temperature on Specific Heat

The average specific heat of the Ventron TKP-IP at each temperature measured using
the pocographite reference are listed in Table 2.7, while those found using Pyroceram R© are in
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Figure 2.10. Specific heat as a function of density for
the Ventron TKP-IP at 25 oC. The data shows a shallow
downward trend in specific heat as density increases. The
results also show a dependence on the reference material. The
specific heat found with pocographite (black) is ∼ 15% higher
than that found with Pyroceram R© (blue).

42



Figure 2.11. Specific Heat as a function of tempera-
ture for both Ventron TKP-IP samples. The data shows an
upward trend in specific heat with increasing temperature,
which is fit to a linear equation. The specific heat found with
pocographite (black) is consistently higher than that found
with Pyroceram R© (blue).

Table 2.8. Once again, each pellet was compared to the average of 5 shots on the reference
materials at identical machine parameters and temperatures. There is still the observed
variability in specific heat with reference material. The change is specific heat as a function
temperature for the Ventron TKP-IP pellets is presented graphically Figure 2.11. The data
shows an upward trend in specific heat with temperature that is fit to a linear equation.
Since the specific heats found with pocographite are a consistent percentage off from those
found with Pyroceram R©, similar slopes are seen in both linear fits.

Comparison to a Specific Heat Found with Mass Averaging

The specific heat measured at 25 oC with the flash technique can be compared to an
analytical value determined through mass averaging of the constituents. The specific heat
of each component can be found using JANAF tables [41]. Assuming a 0.5 oC temperature
error in the tabular data, the specific heat of Potassium Perchlorate, Titanium, and Titanium
Hydride at 25 oC are cpKP

= 0.7954 ± 0.0054 J/gK, cpTi
= 0.5271 ± 0.0002 J/gK, and

cpTiH
= 0.6030±0.0009 J/gK, respectively. Using the compositions of each TKP and THKP

formulation listed in Section 2, an analytical specific heat using mass averaging can be
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determined. These values are given in Table 2.9. The values in Table 2.9 tend to lie between
those calculated with the pocographite and Pyroceram R© standards. The exception to this
is TKP-OP, which is below this analytical value for both standards.

Comparison to the Proteus R© Software

In order to verify the MATLAB R© routine, it was desired to compare it to the Proteus R©

LFA analysis software [65] provided with the NanoFlash R© machine. The thermal diffusivities
found at 25 oC using the Cowan model with both the Proteus R© software and MATLAB R©

code are presented in Table A.5. The two methods are within 5% for all cases and within
3% for most pellets. As a result, the MATLAB R© code is considered to be an appropriate
analysis method for determining thermal diffusivity.

The specific heats found with the Proteus R© software and the MATLAB R© code using the
pocographite reference are presented in Table A.6, while those found using the Pyroceram R©

reference are presented in Table A.7. The two methods are within 5% for all 1 mm pellets
with most being within 2% . The error in the 3 mm pellets is much larger due to the degree
of signal conditioning that was required. The MATLAB R© and Proteus R© packages must have
different methods for signal conditioning. Despite this difference, the results have overlapping
errors and can be considered essentially the same values. As a result, the MATLAB R© code
is considered to be an appropriate analysis method for determining specific heat.
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Table 2.2. Change in the Thermal Diffusivity with the
Number of Terms Used in the Cowan Model.

Number of Terms 2 3 4 5 10
α (mm2/s) 0.3108 0.3050 0.3050 0.3050 0.3050

Table 2.3. Average Thermal Diffusivity in mm2/s for Each
TKP and THKP Formulation.

Pellet Temperature Average Thermal Formulation Thermal
Label (C) Diffusivity Diffusivity

IP-V-1-68-1 24.58± 0.26 0.3076± 0.0024
IP-V-1-68-2 25.16± 0.43 0.3011± 0.0020 0.3034± 0.0056
IP-V-1-68-3 25.18± 0.36 0.3015± 0.0031
IP-V-1-71-1 24.56± 0.28 0.3041± 0.0024
IP-V-1-71-2 25.18± 0.36 0.2932± 0.0040 0.2997± 0.0082
IP-V-1-71-3 25.20± 0.64 0.3019± 0.0027
IP-V-1-76-1 25.38± 0.19 0.3753± 0.0054
IP-V-1-76-2 24.82± 0.88 0.3729± 0.0047 0.3714± 0.0082
IP-V-1-76-3 24.82± 0.69 0.3660± 0.0042
IP-V-1-79-1 25.04± 0.57 0.4312± 0.0031
IP-V-1-79-2 24.84± 0.80 0.4494± 0.0056 0.4430± 0.0142
IP-V-1-79-3 25.26± 0.28 0.4485± 0.0047
IP-A-1-71-1 24.76± 0.35 0.2457± 0.0019 0.2457± 0.0019
IP-A-3-71-1 24.90± 0.30 0.2239± 0.0042
IP-A-3-71-2 25.12± 0.36 0.2151± 0.0066 0.2155± 0.0139
IP-A-3-71-3 25.08± 1.30 0.2074± 0.0113
OP-1-80-1 25.08± 0.48 0.3050± 0.0021
OP-1-80-2 25.38± 0.39 0.3290± 0.0045 0.3236± 0.0209
OP-1-80-3 25.30± 0.41 0.3369± 0.0040

THKP-1-80-1 24.88± 0.26 0.2964± 0.0040
THKP-1-80-2 25.12± 1.37 0.3048± 0.0037 0.3057± 0.0131
THKP-1-80-3 25.14± 0.40 0.3159± 0.0025
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Table 2.4. Average Thermal Diffusivity in mm2/s for the
Ventron TKP-IP at Temperature.

Pellet Temperature Average Thermal
Label (C) Diffusivity

IP-V-1-71-1 24.56± 0.28 0.3041± 0.0024
IP-V-1-71-1 49.92± 0.18 0.2696± 0.0033
IP-V-1-71-1 100.02± 0.18 0.2424± 0.0020
IP-V-1-71-1 150.02± 0.18 0.2112± 0.0014
IP-V-1-71-1 199.74± 0.42 0.1880± 0.0013
IP-V-1-71-1 250.24± 0.30 0.1780± 0.0018
IP-V-1-71-2 25.18± 0.36 0.2932± 0.0044
IP-V-1-71-2 49.96± 0.21 0.2603± 0.0020
IP-V-1-71-2 100.02± 0.19 0.2325± 0.0013
IP-V-1-71-2 150.02± 0.19 0.2128± 0.0011
IP-V-1-71-2 200.26± 0.51 0.1866± 0.0017
IP-V-1-71-2 250.14± 0.32 0.1766± 0.0013
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Table 2.5. Average Measured Specific Heat in J/gK of
Each TKP and THKP Formulation Using the Pocographite
Reference.

Pellet Temperature Average Specific Formulation Specific
Label (C) Heat Heat

IP-V-1-68-1 24.58± 0.26 0.7297± 0.0243
IP-V-1-68-2 25.16± 0.43 0.7813± 0.0205 0.7466± 0.0480
IP-V-1-68-3 25.18± 0.36 0.7287± 0.0276
IP-V-1-71-1 24.56± 0.28 0.8436± 0.0364
IP-V-1-71-2 25.18± 0.36 0.7710± 0.0297 0.8124± 0.0615
IP-V-1-71-3 25.20± 0.64 0.8225± 0.0334
IP-V-1-76-1 25.38± 0.19 0.7491± 0.0290
IP-V-1-76-2 24.82± 0.88 0.7407± 0.0271 0.7456± 0.0234
IP-V-1-76-3 24.82± 0.69 0.7363± 0.0269
IP-V-1-79-1 25.04± 0.57 0.7909± 0.0262
IP-V-1-79-2 24.84± 0.80 0.7793± 0.0194 0.7694± 0.0446
IP-V-1-79-3 25.26± 0.28 0.7380± 0.0223
IP-A-1-71-1 24.76± 0.35 0.7388± 0.0302 0.7388± 0.02302
IP-A-3-71-1 24.90± 0.30 0.8804± 0.0787
IP-A-3-71-2 25.12± 0.36 0.9948± 0.0883 0.9279± 0.1283
IP-A-3-71-3 25.08± 1.30 0.9086± 0.1390
OP-1-80-1 25.08± 0.48 0.6530± 0.0177
OP-1-80-2 25.38± 0.39 0.6445± 0.0235 0.6491± 0.0181
OP-1-80-3 25.30± 0.41 0.6498± 0.0268

THKP-1-80-1 24.88± 0.26 0.7120± 0.0240
THKP-1-80-2 25.12± 1.37 0.7274± 0.0322 0.7356± 0.0489
THKP-1-80-3 25.14± 0.40 0.7675± 0.0289
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Table 2.6. Average Measured Specific Heat in J/gK of
Each TKP and THKP Formulation Using the Pyroceram R©

Reference.

Pellet Temperature Average Specific Formulation Specific
Label (c) Heat Heat

IP-V-1-68-1 24.58± 0.26 0.5967± 0.0211
IP-V-1-68-2 25.16± 0.43 0.6388± 0.0183 0.6104± 0.0398
IP-V-1-68-3 25.18± 0.36 0.5958± 0.0229
IP-V-1-71-1 24.56± 0.28 0.6898± 0.0310
IP-V-1-71-2 25.18± 0.36 0.6304± 0.0259 0.6642± 0.0510
IP-V-1-71-3 25.20± 0.64 0.6725± 0.0285
IP-V-1-76-1 25.38± 0.19 0.6108± 0.0239
IP-V-1-76-2 24.82± 0.88 0.6150± 0.0232 0.6097± 0.0200
IP-V-1-76-3 25.26± 0.28 0.6031± 0.0216
IP-V-1-79-1 25.04± 0.57 0.6467± 0.0232
IP-V-1-79-2 24.84± 0.80 0.6372± 0.0174 0.6291± 0.0373
IP-V-1-79-3 25.26± 0.28 0.6035± 0.0191
IP-A-1-71-1 24.76± 0.35 0.6041± 0.0258 0.6041± 0.0258
IP-A-3-71-1 24.90± 0.30 0.7496± 0.0676
IP-A-3-71-2 25.12± 0.36 0.8470± 0.0758 0.7900± 0.1094
IP-A-3-71-3 25.08± 1.30 0.7736± 0.1185
OP-1-80-1 25.08± 0.48 0.5339± 0.0157
OP-1-80-2 25.38± 0.39 0.5270± 0.0203 0.5308± 0.0154
OP-1-80-3 25.30± 0.41 0.5313± 0.0227

THKP-1-80-1 24.88± 0.26 0.5821± 0.0210
THKP-1-80-2 25.12± 1.37 0.5948± 0.0274 0.6015± 0.0408
THKP-1-80-3 25.14± 0.40 0.6275± 0.0253
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Table 2.7. Average Measured Specific Heat in J/gK of Ven-
tron TKP-IP at Temperature Using the Pocographite Refer-
ence.

Pellet Temperature Average Specific
Label (C) Heat

IP-V-1-71-1 24.56± 0.28 0.8436± 0.0487
IP-V-1-71-1 49.92± 0.18 0.9941± 0.0530
IP-V-1-71-1 100.02± 0.18 0.9863± 0.0535
IP-V-1-71-1 150.02± 0.18 1.0908± 0.0524
IP-V-1-71-1 199.74± 0.42 1.1406± 0.0639
IP-V-1-71-1 250.24± 0.30 1.2858± 0.0695
IP-V-1-71-2 25.18± 0.36 0.7710± 0.0368
IP-V-1-71-2 49.96± 0.21 0.7987± 0.0370
IP-V-1-71-2 100.02± 0.19 0.9007± 0.0285
IP-V-1-71-2 150.02± 0.19 1.0192± 0.0384
IP-V-1-71-2 200.26± 0.51 1.0363± 0.0307
IP-V-1-71-2 250.14± 0.32 1.1394± 0.0388

Table 2.8. Average Measured Specific Heat in J/gK of Ven-
tron TKP-IP at Temperature Using the Pyroceram R© Refer-
ence.

Pellet Temperature Average Specific
Label (C) Heat

IP-V-1-71-1 24.56± 0.28 0.6898± 0.0417
IP-V-1-71-1 49.92± 0.18 0.7900± 0.0433
IP-V-1-71-1 100.02± 0.18 0.7561± 0.0415
IP-V-1-71-1 150.02± 0.18 0.7994± 0.0386
IP-V-1-71-1 199.74± 0.42 0.8159± 0.0459
IP-V-1-71-1 250.24± 0.30 0.9219± 0.0499
IP-V-1-71-2 25.18± 0.36 0.2932± 0.0328
IP-V-1-71-2 49.96± 0.21 0.6344± 0.0309
IP-V-1-71-2 100.02± 0.19 0.6902± 0.0226
IP-V-1-71-2 150.02± 0.19 0.7466± 0.0284
IP-V-1-71-2 200.26± 0.51 0.7420± 0.0223
IP-V-1-71-2 250.14± 0.32 0.8170± 0.0280
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Table 2.9. Analytically Determined Specific Heat in J/gK
of Each TKP and THKP Formulation Using Mass Averaging.

Energetic Percentage Percentage Percentage Specific Heat
Material Ti TiH1.65 KP

TKP-IP (Ventron) 33 0 67 0.7069± 0.0036
TKP-IP (ATK) 33 0 67 0.7069± 0.0036

TKP-OP 41 0 59 0.6854± 0.0032
THKP 0 33 67 0.7319± 0.0036
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Chapter 3

Exploring Property Variation via
Numerical Simulations on Synthetic
Microstructures

In the previous chapter it was suggested that differences in the macroscale thermal prop-
erties of two pressed powder pellets are most likely attributable to constituent particle mor-
phology and subsequent meso-structure of the pellets. In this chapter, we address the idea
that the morphology/structure of an object matters for conduction. Connectivity of regions
of high transport, anisotropic constituent material properties and cluster sizes and shapes
can lead to interesting (even “anomalous”) conduction phenomenology, both at steady state
as well as in unsteady conditions. These phenomena are largely known, but are perhaps
unappreciated in their relation to transport across particulate materials’ meso-structures;
i.e., the process of homogenization. We will present a series of finite element simulations
which illustrate various phenomena including the that of so-called anomalous diffusion.

Diffusion in Fractal “Particles”

In this section, we briefly examine the effects of fractional (fractal) geometry on diffusion
processes. Here we consider two particular fractal geometries: a Koch Cube of Type 1
(dimension 2.3347) and a Koch Cube of Type 2 (dimension 2.5). Models of these two
geometries were constructed and meshed. Figure 3.1 shows the meshes and gives some
characteristic information.

Simulations were performed in which the Koch Cubes were given an initial internal tem-
perature of zero while on the outer surface a temperature of one was instantaneously imposed
and maintained. Temperature profile snapshots at various points in time are shown in Fig-
ure 3.2. Note that the characteristic shape of the isotherms becomes smoother and simpler as
time goes by. Early in time there is considerable roughness or structure associated with the
large surface area due to the small blocks on or near the outer surface. Those fine structures
quickly saturate, leaving coarser structures in the interior.

As a representation of the overall extent of energy transfer (or equivalently, the degree of
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conversion/extent of reaction in a diffusion-limited process), the volume of material below
a certain threshold temperature (here 0.5 was chosen) was monitored continuously. This
might represent a diffusion-controlled reaction front or a level of energy transfer in a thermal
process.

(a) Type 1 Koch Curve (shown at level 4) (b) Type 2 Koch Curve (shown at level 3)

Figure 3.1. Models of Koch Cubes. (a) Type 1 surface
fractal dimension = log(13)/log(3) = 2.3347. Surface area in-
creases by 13/9 times at each level. Volume increases at each
level, asymptotically approaching value of 10/7xV0, where V0

is original cube volume. (b) Type 2 surface fractal dimension
= log(32)/log(4) = 2.5. Surface area increases by factor of
two at each level. Volume remains constant at each level.

For comparison, models of other traditional three-dimensional objects (cubes, spheres,
oblate and prolate spheroids) were also meshed and the same process repeated to capture
the time history of the “extent of reaction” for each of the objects. Figure 3.3 shows the
extent of reaction vs. time for the finite element representation of these objects as well as an
analytic solution result for a sphere. While there are clearly mesh dependencies associated
with the coarseness of the mesh (the extent of reaction was computed as a volumetric sum
over the finite elements) the trends are clear. The traditional three-dimensional objects all
follow a t1/2 power law while the fractal objects follow t1/3 for Koch Cube Type 1 and t1/4

for Koch Cube Type 2 (note the dashed lines in Figure 3.3).

The trends follow expected behavior as described by Fournier and Boccara who state
that this time dependency is proportional to time to the power of β = (d − ds)/2 where d
is the Euclidean embedding dimension of the object (i.e., d = 3 in all cases considered here)
and ds is the dimension of the surface (ds = 2 for traditional objects, ds = 2.3347 for Koch
Cube Type 1, and ds = 2.5 for Koch Cube Type 2). The time exponents β work out to be
β = 1

2
for cubes, spheres, and spheroids; β = 1

4
for Koch Cubes of Type 2; and β ≈ 14 for

Koch Cubes of Type 1. The analytical solution for the temperature, T in a sphere of radius
R having thermal diffusivity κ initially at zero temperature and with the surface suddenly
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heated to T = T1 is given by [12] as:

T =
rT1

r

∞∑
n=0

{
erfc

[
(2n + 1)R− r

3(κt)1/2

]
− erfc

[
(2n + 1)R + r

2(κt1/2

]}
(3.0.1)

From this equation, the temperature front propagation (i.e. r vs. time) for an arbitrary
isotherm (say T = 1

2
T1) can be determined. This can then be converted into an “extent of

reaction”, α, defined as the volume associated with T > 1
2
T1 divided by the total volume,

as a function of time. This analytic solution is also shown in Figure 3.3 and parallels the
dashed t

1
2 line.

Hence, it can be seen that for complex structured “particles” (see for example Figure 5.1)
the details of their morphology can contribute to the observed conduction phenomenology
on this scale and potentially lead to a different homogenized response, here indicated by the
value of the exponent β.

Fractal Percolation Clusters: Transient Response.

The goal of this set of simulations was to further demonstrate with finite element models
the phenomena of anomalous diffusion which has been reported by Fournier and Boccara in
laser-pulse heated clusters of copper spheres [25] and to motivate by illustration discussion
of scale-dependent conduction phenomena and related variability.

Here we constructed a fractal network of connected cubes by building a 30x30x30 array
of cubic sites (27,000 available sites) where sites were chosen at random until a total of
8400 were selected (31.11%, near the percolation threshold for a cubic lattice). This random
process produced isolated cubes as well as connected clusters of cubes. The largest connected
cluster was extracted and used for further analysis; it consisted of 2399 cubes and percolated
in all three (x, y, z) directions. The cluster of cubes was meshed with finite elements, each
cube with a 10x10x10 mesh for a total of 2,399,000 elements. Two versions of the mesh were
built: a “connected mesh” in which all the elements identical, and an “isolated mesh” in
which each individual cube was isolated from each other by being coated on three sides with
a layer of another material (i.e., the 10x10x10 cubes were each constructed with a 9x9x9
center cube with the remainder one element wide). Figure 3.4 shows the two meshes; the 25
red patches were locations on the x=0 plane where boundary conditions would be applied.

Simulations were performed by giving all elements an initial temperature of T=0 except
for the red faces which were given a 1000 K initial temperature (note the surface boundary
condition temperature is effectively applied in the code as a linear profile or right-triangle-
shaped pulse, 1 element deep as illustrated in Figure 3.5). All boundaries were treated
as adiabatic and only thermal conduction was included (i.e., no convection or radiation).
The baseline material was given properties of ρ = 1000kg/m3, λ = 100W/m − K, C =
1000J/kg − K, κ = 10−4m2/s. For the isolated case the interface material was treated
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as an insulator with properties of ρ = 1000kg/m3, λ = 5W/m − K, C = 1000J/kg − K,
κ = 5x10−6m2/s.

The object of this exercise was to observe anomalous diffusion in the vein of that observed
by Fournier and Boccara. In their tests, the same locations which were initially heated,
were subsequently monitored for temperature-time response. The same was done here; the
temperatures of the initially heated regions (the red patches) were monitored over time.
Figure 3.6 shows the time temperature response of the various locations, on a log-log scale.
There are several noteworthy aspects of these figures.

First, the overall shape (almost flat profile from time of 10−9 sec to ∼ 10−6 sec followed
by a drop-off at a rate proportional to time to the 1

2
power) corresponds with the analytic

solution for an initial linear profile (cf. Figure 3.5) on a semi-infinite domain (see [12] p. 54,
eq. (5)). The time to reach the bend in the curve (at ∼ 10−6 sec in Figure 3.6) is related to
the thickness of the applied initial right-triangle-pulse initial condition, with a thinner pulse
width resulting in a shorter flat profile.

Second, beginning about t = 5x10−3, there is a shift in temporal response from a t
1
2

dependency to another. At this point it is helpful to draw attention to the distinction
between the various colored curves in the legend. The black curve is the average over all
the temperatures monitored at the different locations. At some locations, the rate of the
temperature drop is greater, at other locations lower than average; pointing to the variability
of the thermal response due to the inhomogeneity of the structure. This behavior is associated
with changes in the block structure of the domain, with an increase in area or “forks” resulting
in a faster drop, and constrictions or partially blind paths resulting in a slowdown in the
temperature drop. The time at which these variations begin corresponds with the thermal
transit time across the first layer of cubes (10 elements thick) again leading to the t1/2 decay
typical for conduction in three dimensional objects with two dimensional surfaces. Note that
that for some locations, the temperature history actually reverses direction temporarily and
gets hotter. This is due to thermal pulses arriving from neighboring sources and driving the
temperature higher.

Third, the simulations for the connected mesh eventually show a reversion to a t
1
2 response

behavior beginning at about 10 to 20 s due to the finite size of the cluster. This completes
the same kind of three-stage response as observed by Fournier and Boccara: a period of t

1
2

behavior associated with the conduction in the first layer of material, followed by a different
slope associated with the spreading of heat from the first layer to other layers in a potentially
tortuous path, followed by a repeat of the t

1
2 behavior associated with a homogenized or bulk

response.

2-D Square Lattice of Boxes with Bridges.

This section is similar in many ways to the previous one, in that a randomized two-
dimensional array is developed. However, in contrast to the previous section which had
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isolated clusters and individual sites “floating in space,” here all locations are connected. In
this way, it was hoped that this structure, or a similar one, could be constructed experimental
validation.

The geometry was a 50 x 50 array of “boxes” each of size 5 mm x 5 mm such that the
overall dimension was 25 cm x 25 cm. Within certain, randomly chosen boxes a 4 mm x 4
mm hole was created, while the rest of the boxes remained intact. Overall, 872 of the 2500
boxes (34.9%) had a hole. Since there were “bridge” structures to ensure the clusters did
not fall apart, even boxes with holes had some solid material. The overall fraction of solid
was 77.7% with 22.3% air space. Figure 3.7 shows the geometry which was meshed with
quad finite elements (10x10 per box).

Simulations of the thermal behavior of the randomized lattice were performed. The ma-
trix material was given properties similar to aluminum (λ = 200W/m−K, ρ = 2700kg/m3,
C = 900J/kg − K, κ = 8.2304x10−5m2/s) while the holes were assumed to be air (λ =
0.03W/m −K, ρ = 1kg/m3, C = 1000J/kg −K, κ = 3x10−5m2/s). Only conduction heat
transfer was considered; convection and radiation were ignored. The initial temperature of
the domain was set to zero and a constant temperature boundary condition of 80 was applied
on the left side. The temperature of the center of each box (either air or aluminum) was
monitored over time, such that for each x-direction layer, there were 50 values recorded.
Figure 3.8 shows the temperature history of certain layers, including Layer 1 (nearest the
heated surface) and Layer 50 (furthest from heated surface).

Also shown in Figure 3.8 are analytic solutions for the problem for a slab of length L and
diffusivity κ, with initial temperature of zero and imposed boundary temperature of T1 at
x = 0 and adiabatic at x = L. This is given by Equation 3.0.2.

T = T1

[
1− 4

π

∞∑
n=1

1

2n− 1
sin

(
(2n− 1)πx

2L

)
exp

(
−(2n− 1)2π2

4L2
κt

)]
(3.0.2)

Note that the only physical property value that influences this equation is the thermal
diffusivity κ. The two solutions labeled Analytic A and Analytic B are both solutions to
Equation 3.0.2 but with one of two different values of the diffusivity, κ. Analytic A uses
the aluminum diffusivity; while Analytic B uses a homogenized mixture value—that is in
Analytic B the diffusivity was adjusted such that the solution at layer 50 (Figure 3.8(f))
matched. This happened with a diffusivity of 76.5 % of the original aluminum diffusivity.

The solution at Layer 1 (in the aluminum) agreed with the Analytic A solution at early
times—until the thermal wave penetrated beyond the first layer.

Part of the goal of this study was to determine how many layers were required to get a
full homogenized solution. Here by Layer 10 the solution is nearly homogenized, though it
continues to improve the further from the heat source one looks. Variability on a mesoscale
prior to homogenization can also be illustrated by taking the differences in temperature
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between the case with holes (Figure 3.7) and a similar case without holes—pure aluminum,
as in Figure 3.9.

In the layers nearest the heat source there are locations for which the case with holes
exceeds the temperature of the pure aluminum case, but at other locations the opposite is
true. These are caused by “constrictions” and “openings” in the heat flow paths around
the holes. Away from the heated surface the “wiggles” diminish and eventually there is a
uniformity of temperatures, indicating homogenized behavior has been reached at a lower
thermal diffusivity.

Figure 3.10 shows full surface images of the differences in temperatures between the base-
line case with holes and uniform “A” solution (i.e., Equation 3.0.2 with aluminum properties)
and uniform “B” (homogenized properties, diffusivity is 0.765x aluminum value).

If we treat the baseline case with holes solution as the “true” solution (because we have
accounted for material variations), we can learn something about approximations made when
treating all the material with a single set of properties. In this graph, a gray color represents
no difference while other spectrum colors indicate higher or lower temperatures. Note that at
very early times, the true solution is slightly more closely approximated (i.e., more gray, less
of other colors) by the aluminum properties solution (Uniform A). At later times and farther
into the sample the homogenized solution (Uniform B) does much better. In particular,
there is a noticeable error of about 5 degrees (cyan color) for an extended period of time
with Uniform A, while Uniform B does pretty well for much of the simulated time and over
much of the domain.

This research suggests a couple goals. One goal would be to be able to develop models that
can reproduce something like the “true” solution (i.e., include spatial and temporal variations
of the right magnitude, in a probabilistic sense) without requiring the full geometric fidelity
(i.e., don’t model the “holes” explicitly). Another goal is the a priori prediction of appropriate
effective material properties based on knowledge of geometric structure (e.g. connectivity,
particle sizes, void fractions, etc.) and inter and intra-particle material properties (e.g.,
anisotropic properties, contact conductance, etc.).

A similar set of simulations was performed with 2-D arrays of boxes, this time without
holes and bridges, but rather two components—a high thermal conductivity material and
a low thermal conductivity material. These were used as test cases for an exercise in con-
sidering the issues pertinent to experimental validation of multi-scale models as well as to
uncertainty quantification in disordered, complex materials. These results were published at
a combined AIAA/ASME conference and the resulting paper [71].
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Conduction in Materials with Random Materials Struc-

ture

The next two subsections explore simulation capabilities aimed at investigating the role
of disorder in the materials micro-structure during thermal conduction. Two systems are
described both consisting of anisotropic materials. The first consists of a pack of disks
composed of anisotropic materials with random orientations. While the second shows a
notional polycrystalline material with random grain orientations. In each case it is assumed
for simplicity that thermal transport is well described by the diffusion equation.

2-D Array of Disks with Randomly Oriented Non-Isotropic Ther-
mal Conductivity.

Here we examine the effects of non-isotropic thermal conductivity on the heat transfer
through a multiple particle structure. The geometry was a two-dimensional array of disks
arranged in a hexagonal close-packed arrangement between two plates. Each individual disk
was assumed to be constructed of a material with highly non-isotropic thermal conductivity
with a value of 100x in the “grain direction” vs. 1x in cross grain direction. (These were
purely hypothetical but one might imagine some materials such as filled composites may have
widely disparate properties in the various directions.) The disks were oriented in a random
angular orientation such that the grain direction varied. Perfect thermal contact between
disks (shared nodes) was assumed. The plates were used to apply temperature boundary
conditions at the top and bottom surfaces; the plates themselves had very high thermal
conductivity so that the temperature BC would be uniformly applied. Figure 3.11 shows the
overall geometry meshed with quadralateral finite elements as well as the randomized grain
orientation used.

Figure 3.12 shows the temperature profile for an imposed set of boundary conditions:
T=1000 on the lower surface and T=0 on the upper. Note that the isotherms are not
parallel, indicating non-uniform heat conduction. Figure 3.13 shows the corresponding heat
flux paths through the disk array. There appear to be several preferential “channels” for
heat flow. There also appear to be some locations which show an “eddy” like flow of heat
(upstream to the overall bottom-to-top temperature gradient).

The detail of heat flow through Disk 34 (fourth row up, fourth disk from left) shows
some interesting phenomena. Within that one disk, heat flow in several different directions
occurs simultaneously, with an overall circuitous route. There are heat flow “entries” at the
3 o’clock (main entry), 5 o’clock, and 9 o’clock positions; and heat flow “exits” at the 1
o’clock (main exit), 7 o’clock and 11 o’clock positions.

One reason for modeling the particular set up here (i.e. disk array) was the potential
for building a similar experimental set-up which could be used as a test system for an IR
camera (see next Chapter). We discussed building an array with disks of various thermal
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properties (randomized anisotropic, or mixture of high conductivity disks with low conduc-
tivity disks, etc.) and some method of heating (perhaps a heated copper plate at one end
and a water-jacketed, cooled copper plate at the other). However, this particular system was
not constructed.

3-D Random Grain Structure in Cube.

Here we examine perhaps a more realistic geometry, in terms of materials micro-structure,
which approximates a polycrystalline material. An overall cube was constructed, then subdi-
vided into separate “grains” by passing cutting planes through the cube at various locations
and orientations. The final mesh consisted of 162 separate grains within the cube, and a
randomized grain orientation direction was assigned to each one. Figure 3.14 shows the mesh
and associated grain orientation vectors.

The grains were assumed to be similar to quartz crystals, having an anisotropic thermal
conductivity which was 10 W/m-K in one principal direction and 5 W/m-K in the other two
principal directions. The simulation consisted of applying a 1000 degree boundary condition
on one side of the cube, with the opposite side having a 0 degree boundary condition. The
four remaining sides were treated as adiabatic. Steady state solutions were obtained and
then processed to obtain heat flux and a value of effective thermal conductivity. No contact
resistance between grains was included; all shared grain faces had shared nodes.

Figure 3.15 shows the temperature profile and heat flux pathways produced by this
simulation. The temperature contours are nearly parallel, though some asymmetries also
appear. There are also some preferential heat transfer paths apparent. Overall the effective
thermal conductivity from this particular instance was determined as 6.45 W/m-K. This is
between the 10 W/m-K and 5 W/m-K principal direction values, but closer to the lower
value. This might be expected given that two principal directions had the lower 5 W/m-K
and only one direction had the 10 W/m-K value.

One might imagine building a series of these kind of computational models, each having
different randomized structures and then performing the simulations to produce statistical
variations. However, this remains for future work as does the creation of more realistic
geometries of polycrystalline materials (see below).

Another aspect that should be remembered is that the thermal transport between individ-
ual grains having different orientations is not perfect as has been assumed here. The lattice
vibrations characterizing thermal waves will not perfectly transfer across grain boundaries.
Thermal contact resistance could be used to reproduce some of these effects, but knowing a
priori what value to use for this becomes a more difficult problem. Other portions of this
report delve into this area at a more fundamental level.
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Creating Computer Models of Sub-Particle Microstructures

Following the initial scoping simulation of the previous subsection, more accurate poly-
crystalline geometries were generated by the Monte Carlo Potts (MCP) model [32] on a
domain of 128x128x128 lattice sites for a total of just over two million. A total of 1,380
MCP simulations were performed, each with a different initial distribution of uniform ran-
dom site occupancies, in order to create a population of distinct micro-structure models
with similar overall characteristics. Simulation configurations were extracted after twenty
million, thirty million, and fifty million MCP time steps, producing average grain volumes
of approximately 1,200, 7,600, and 78,000 lattice sites respectively. Thus, a total of 4,140
distinct polycrystalline models was created for this study.

The voxellated polycrystalline models were converted into finite element meshes by sim-
ply creating a single, eight-node, cubic, hexahedral element for each voxel. Groups of voxels
/ elements were assigned unique material indices to demarcate the grains in the model.
Figure 3.16 contains examples of three models from each grain size. These models of poly-
crystalline microstructures can be overlaid onto models of thermal transport in order to
incorporate the effects of sub-particle microstructures on thermal transport. However, the
continuation of this remains for future work.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

Figure 3.2. Evolving temperature history in Koch Cube
models ( a thru e: Type 1 (level 4); f thru j: Type 2 (level
3)). Images from left to right are at times of 5x10−5, 5x10−4,
5x10−3, 5x10−2, and 5x10−1 sec, respectively.
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Figure 3.3. Extent of reaction vs. time for various 3-D
and fractal objects.
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(a) (b)

(c) (d)

Figure 3.4. Connected and Isolated cluster finite element
meshes. (a, b) Connected Mesh; (c, d) Isolated Mesh
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Figure 3.5. Initial condition applied to surface of red faces
in Figure 3.4. Distance is in terms of element thickness.

(a) (b)

Figure 3.6. Temporal response of heated regions in the
two meshes of Figure 3.4. The two numbers in the labels of
each line are coordinate locations on the heated faces (i.e.,
the first one is 5 units over and 20 units up on the original
30x30 cube face). (a) connected mesh thermal response; (b)
isolated mesh thermal response
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(a) (b)

Figure 3.7. 2-D square lattice of boxes with bridges. Red is
matrix (aluminum properties), blue is void space (air proper-
ties). (a) Overall Box Array; (b) Close-up of lower left corner
with FE mesh.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8. Temperature histories (lines) for several differ-
ent layers in randomized box array (layer 1 is nearest to the
heated boundary). Red dots represent the analytic solution
for aluminum properties. Green dots represent the analytic
solution for a homogenized mixture of aluminum and air.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9. Deviation of temperature profiles from uniform
temperature at various locations in random checker board
system as function of time. The temperature at the center of
each box in each layer is represented as a separate line.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.10. Deviation of temperature field: (a thru f)
from uniform temperature at different time planes; (g thru l)
from thermal field given by effective conductivity.
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(a) (b)

Figure 3.11. Finite element mesh and grain orientation of
2-D disk array. (a) Finite Element Mesh of Disk Array; (b)
Grain Orientation.
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(a) (b)

(c)

Figure 3.12. Steady-state temperature profile in Disk Ar-
ray. (a) Temperature; (b) Temperature with Grain Orienta-
tion.
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(a) (b)

(c)

Figure 3.13. Heat flux pathways through disk array. In
the left graph, X marks Disk 34. In the right graph, arrow
indicates grain orientation of Disk 34. (a) Heat Flux Paths;
(b) Detail of Disk 34.
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(a) (b) (c)

Figure 3.14. Cube consisting of 162 grains each of which
has a randomized orientation. (a) Mesh (162 Grains); (b)
Mesh and Grain Orientation Vectors; (c) Grain Orientation
Vectors

(a) (b)

Figure 3.15. Finite element mesh and grain orientation of
model polycrystal. (a) Steady State Temperature Profile; (b)
Heat Flux Pathways.
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(a)

(b)

(c)

Figure 3.16. Models of polycrystals containing grains of
approximate average volume a) 1,200; b) 7,600; and c) 78,000
voxels / finite-elements. The coloring is arbitrary, and meant
only to distinguish one grain from another.
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Chapter 4

Probing the Inhomogeniety of the
Thermal Field in Pressed Pellets via
Infrared Camera

The simulations in the previous chapter demonstrated the inhomogeneity of the ther-
mal field due to structure on the mesoscale. In fact, it is the cross-over from homogeneous
micro-scale to homogeneous macroscale which defines the “between” or meso-scale with its
attendant variability. Clearly it is the inhomogeneous structure which regulates this process.
Hence, characterizing the relationship between random meso-structure and transport prop-
erties is of considerable interest for prediction and control of the performance of these types
of materials in various applications.

In this chapter, we seek to conduct a spatially and temporally resolved assessment of
thermal transport in pressed powder beds. A measure of thermal transport within porous
powders was conducted through the integration of a thermal imaging camera to macroscale
porous test sample. Other methods of assessing thermal transport are typically conducted in
a manner that averages the temperature profiles within the material or on a surface in time
and space. Through the acquisition of a high-speed thermal imaging camera, the ability to
monitor the thermal transport at relevant timescales and with high spatial resolution on the
order of the particle sizes are possible.

Experimental Setup

A bench-top experiment coupling a thermal imaging camera to two slabs of pressed pow-
der sandwiched around a heat source was built. This experiment (Figure 4.1) was designed
around the need for thermal imaging with spatial resolution suitable for resolving particles
and particle boundaries. The heat source consisted of a Tophet C ribbon connected to a
constant current supply. This ribbon heater was stretched between an anchored copper block
and a copper block mounted to a spring loaded micro slide that keeps the ribbon in tension
as it expands and contracts during heating and cooling. The test sample slabs were held
against the ribbon heater with adjustable aluminum blocks with width equal to 1.27 cm.
The top aluminum block was pressed against the sample and fixed in place with a screw.
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When electrical current was supplied to the ribbon heater, both mating surfaces of the slabs
were heated nearly uniformly. Electrical current was instantaneously applied (< 10µs) and
remained at a constant value until removed. Typical current values of 1-2.5 amps were used.

Figure 4.1. Illustration of the ignitor and pellet alignment
fixture for observation of thermal transport.

The Tophet C ribbon had dimensions 50.8 um thick by 2.54 mm wide. The length of the
ribbon spanned two copper anchoring plates between 17 to 24 mm apart. This separation
distance was limited by the use of aluminum clamping blocks and the working distance of
the spring. The stationary copper anchoring plate had dimensions of 19.3 mm x 12.8 mm
x 4.9 mm and was attached with machine screws to an electrical grade (GPO3) fiberglass
board. The ribbon was clamped to the anchoring plate with a copper bar, 6 mm x 12.8
mm x 1.4 mm. The other end of the ribbon was clamped in a similar manner to a thinner
plate, 38.2 mm x 12.8 mm x 1.4 mm. This plate was attached to a precision ultra-miniature
ball bearing carriage, McMaster-Carr part number 8381K29, allowing for 28 mm of travel.
Electrical connections to the ribbon are made at both copper blocks by soldering on 18 AWG
wires which were routed to a constant current power supply. The constant current power
supply was connected to the ribbon heater by 18 AWG wire. This was all mounted to the
test apparatus, as shown in Figure 4.2, which was machined from Delrin and allowed the
fiberglass board (Figure 4.1) to be adjusted for alignment. The Delrin body was fastened
to an array of micrometer adjustable translation stages that provide lateral and rotational
adjustment in the x, y and z direction. A 1 m rail connects the camera to the stack of
translation stages allowing quick realignment of the target (Figure 4.2).

The presented faces of the pressed powder slabs were monitored during heating with the
thermal imaging camera. The camera and lens arrangement consisted of a FLIR SC8203
infrared camera with a 4x objective for a field of view that was 4.6 mm square (Figure 4.3).
The camera CCD was a 1024 x 1024 pixel array for a spatial resolution of 4.5 µm/pixel.
ExaminIR software was used for setup and control of the camera.

Samples were prepared by lapping the desired material to 2.54 mm x 2.54 mm by 6 to
12 mm long. This lapping process used progressively finer silicon carbide paper with the
finishing passes at 1200 grit. The maximum length of the samples was limited to the width

76



Figure 4.2. Photograph of IR camera for observation of
ignitor and pellets arrangement.

of the aluminum clamps and the minimum by the source of the sample material. Ammonium
perchlorate (AP) samples were lapped from 0.635 cm diameter pressed pellets made from
200 µm mean particle size and pressed to 94% TMD.

Because of the short depth of field when using the 4x objective, precise alignment was
required. The edge of the ribbon closest to the camera must be lined up vertically with the
front surface of the upper and lower pellet and the upper and lower clamping blocks. This
was accomplished with a 1 mm thick aluminum wafer cut to fit under the top screw that
secures the lower clamping block (left photo of Figure 4.4). Once installed, all components
were aligned to the surface of the wafer facing the stack. The stack was clamped in place
and the alignment wafer was removed (right photo of Figure 4.4).

Additive manufacturing samples

Before discussing the result of the pressed powder samples we performed a series of tests
on additively manufacture plastic samples. Videos were collected from samples of a regular
grid made by additive manufacturing with a thermoplastic (Figure 4.5). For these tests, the
sample was simply placed on one of the narrow edges onto a hot plate that was controlled
to nominally 70C. The thermal transport was recorded in videos with the IR camera. Due
to the edge effects of the thin plastic sample, imperfections in the hot plate temperature
uniformity and lens effects a radial temperature profile was measured.

Nonetheless, spatial line outs of temperature extracted from the video images are plotted
in at various times in Figure 4.6 where the effect of the open spaces in the grid reflect
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Figure 4.3. Scale measurement of FOV for 4x microscope
lens.

a different temperature than the plastic regions as expected. This is observed at a y-axis
position of 748 pixels (middle image of Figure 4.6). Very near the hot plate surface is a nearly
constant temperature profile within the plastic sample (within the imposed radial artifact
mentioned previously) as shown in the right image of Figure 4.6. Whereas, the temperature
variations due to the disturbance provided by the open regions of the grid are observed in
the solid area between two rows of open spaces as shown in the left image of Figure 4.6).

Experimentation with this additive manufacturing sample provided an convenient test
bed for understanding camera operation, video data collection and Matlab processing. How-
ever, the non-ideal use of a hot plate and the sample variations inherent in the 3D printed
parts resulted in limited testing with these samples. Even so, comparison to simulations in
made in the following subsection.

Modeling of AM Samples

An attempt was made to capture the thermal behavior of the as-built and as-tested
article with a checkerboard pattern of square holes or windows. A finite element mesh of
the additive manufactured part was built along with a mesh of a flat plate representing the
heater plate.

The article was assumed to be loosely attached to the heater; thermal transport from
the heater to the article was done via a thermal contact conductance (a value of 20 W/m2-
K was used). Thermal radiation heat transfer was represented using a partial enclosure
configuration with the external field having an emissivity of one and a temperature of 300
K. All surfaces of the plate and checkerboard article were assumed to have an emissivity
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Figure 4.4. Photograph of aligned pellets and alignment
process to accommodate narrow depth of field.

Figure 4.5. Spatial temperature histories at line-out within
region of interest showing sample heating in time.

of one. The article was initially at 300 K (27C) and the temperature of the plate was
maintained at 360 K (87C). Thermal properties of the checkerboard article were estimated
as ρ=500 kg/m3, Cp=1200 J/kg-K, and κ=0.1 W/m-K.

The calculation was run for 10 min of simulated time. Figure 4.7 shows the mesh of the
article atop the heater plate and the temperature at t=10 min. Note the arched shape of the
temperature profile. This is due to radiative heat transfer, where the middle portion sees a
greater fraction of hot heater plate than do the left and right sides which see more of the
relatively colder surroundings.

Temperatures across the front face, midway between the first and second row (from
bottom) of holes, were monitored and recorded at 1 sec intervals. Figure 4.8 shows snapshots
of temperature at t=5 sec and t=30 sec; temperature scales were adjusted to highlight the
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Figure 4.6. Spatial temperature histories at line-out within
region of interest showing sample heating in time.

distributions about the region between first and second rows of holes. Note that in the
t=5 sec images there is a “cap” or “halo” of slightly elevated temperature above each of
the windows. This is due to radiation heat transfer-the upper surface of each window can
directly see the hot heater plate so it receives extra thermal loading. By the time the t=30
point is reached, the profile has switched such that the region above the windows is cooler
than the windowless regions; this is due to thermal conduction beginning to dominate.

The left to right temperature profiles recorded at 1 sec intervals between t=5 sec and
t=30 sec are plotted in Figure 4.9. Note that scalloped shape of the profile which inverts
over time: at t=5 sec, the regions directly above the windows are slightly hotter than the
windowless regions. At t=14 sec, the profile is nearly flat. By t=30 sec, thermal conduction
has resulted in the windowless region becoming hotter that the region above the windows
(compare experimental data in Figure 4.6).

Figure 4.9 resembles qualitatively the results taken from the experiment as shown in
Fig 4.6, complete with the scalloped shape and the switching of hot locations from above
the windows to the non-window locations. More quantitative agreement could likely be
achieved with better information on the material properties and a more complete model of
the experimental set-up.

Homogeneous samples

Videos were collected from machined slabs of Vespel plastic assumed to be a homogeneous
material suitable for comparison with porous samples of later testing. The ribbon heater
appears as a thin boundary between the two mating faces of the Vespel slabs at the center
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(a) (b)

Figure 4.7. (a) mesh of checkerboard AM article atop
heater plate. (b) temperature profiles at a simulated time of
10 min.

of the region of interest (Figure 4.10).

Through analysis of the collected images in time, temperature histories at fixed spatial
location was extracted. Temperatures across the region of interest at a position of 23 µm
below the ribbon heater are plotted for times during heating for a low and high constant
current value (Figure 4.11). The profiles are nearly of uniform temperature in space and
time as would be expected from a homogeneous sample. The signal-to-noise differences are
observed depending on the magnitude of the thermal gradient established by the current
value and the required camera integration time. Slight spatial variations in the temperature
are observed and likely due to an imperfect contact at the heater-slab interface or material
variations.

Powder samples

Videos were collected from pressed pellets of ammonium perchlorate powders with mean
particle size of 200 µm and 94%TMD. The ribbon heater appears as a thin boundary between
the two mating faces of the powder slabs at the center of the region of interest (Figure 4.10).
The video was collected at 30 fps although faster and slower collection rates were possible.
1862 images were collected such that statistics could be extracted from each image as a
function of time.

The same spatial line-outs of temperature were collected as a function of time at different
current values as shown in Figure 4.12. Here, the effect of material variations are observable
within the temperature histories that are distinctly non-uniform as compared to the profiles
of Figure 4.11.
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(a) (b)

Figure 4.8. Details of temperature profile highlighting the
region between the first and second row of holes. Left: at
t=5 sec; Right: at t=30 sec.

Summary

An experimental capability has been established for the observation of thermal transport
processes in porous materials at relevant time scales and spatial scales suitable for particle
size resolution. This work only began to explore the data collection opportunities from this
experiment and future work will be focused on the application of heat transfer between hot
wires and pyrotechnic beds. Additional efforts on the temperature data extraction from the
volume of collected images and determination of frequency content as it relates to measurable
material characteristics is a worthy next step.
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Figure 4.9. Temperature snapshots between the first and
second row of windows taken at 1 sec intervals from t=5 sec
to t=30 sec.

Figure 4.10. Camera FOV and region of interest for data
analysis showing ribbon heater location between top and bot-
tom pressed pellet slab.
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Figure 4.11. Spatial temperature histories at line-out
within region of interest showing sample heating in time.

Figure 4.12. Camera FOV and region of interest for data
analysis showing ribbon heater location between top and bot-
tom pressed pellet slab.
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Chapter 5

Computational Thermal Analysis of
Pressed Pellets Based on FIB-SEM
Data

In this chapter we consider mod/sim approaches to analyze inhomogeneous temperature
fields in physical microstructures obtained from pressed powders. We present a set of tools
for constructing models suitable for thermal analysis based on microstructures obtained by
serial sectioning imaging experiments. In particular, we set out to calculate the effective
bulk conductivity of a pyrotechnic material composed of a mixture of potassium perchlorate
(KClO4) and Titanium (Ti) given the spatial arrangement of its components as measured by
focused ion beam scanning electron microscopy (FIB-SEM). The computed effective thermal
conductivity is then compared to experimental flash diffusivity measurements.

The comparison is not straightforward, since the Ti phase is highly porous, with mi-
crostructural variations on length scales that cannot be resolved by FIB-SEM. We therefore
use a Bruggeman effective medium approximation for the Ti phase as input to the simula-
tions of the composite powder, and infer the porosity of the Ti phase based on comparisons
between experimental and simulated bulk conductivity values. Fair agreement is obtained
for realistic porosity values, suggesting that the overall approach is feasible. However, given
the complexities of thermal transport in such heterogeneous materials, a number of short-
comings in the approach are evident, and we therefore outline several areas for future work.
Overall, the tools discussed here are sufficiently general to be useful for a broad range of
applications where bridging of microstructural information to bulk properties is necessary.

Introduction

Pyrotechnic and energetic materials are well-studied examples of heterogeneous materials
where small-scale variations in structure can have a drastic effect on large-scale bulk behav-
ior. In typical applications, limited information is available on the microstructural properties
of a given material, while a plethora of bulk material properties can be characterized (e.g.
heat capacity, density, thermal conductivity). In many cases, different mixes of composi-
tionally identical powders that meet the same specifications can perform quite differently.
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The reasons for these discrepancies are not always clear, but given the nature of the mate-
rials, it is highly likely that material micro-structure plays a crucial role. We have therefore
set out to develop a greater understanding of the connections between micro-structure and
bulk properties; in this chapter we evaluate several computational tools for direct numerical
simulations of thermal transport in complex microstructures.

The theoretical study of transport through heterogeneous media is an area of research
with a rich history [89, 76]. Early works focused on effective medium theories [50, 8, 58,
87, 89, 76], where the goal is to derive relatively simple analytical expressions for effective
properties as a function of various microstructural parameters. While these approaches
continue to be highly useful in many applications, their use is often limited by assumptions
regarding the nature of microstructural variations and transport physics.

With the advent of powerful computers, direct numerical simulations based on explicitly
represented microstructures have gained popularity [73, 47]. In parallel, significant advances
have been made in experimental techniques for three-dimensional imaging of complex mi-
crostructures, and their use is becoming increasingly widespread [28, 29, 80]. The devel-
opment of software tools for generating computational models based on experimental data
has also seen significant growth in recent years (e.g. Dream3D [30], SimpleWare IPScan).
While significant advances toward automation of this process have been made, the quality
of the resulting model is not surprisingly highly dependent on the input experimental micro-
structure imaging data. We have therefore explored a number of approaches for generating
computational models of thermal transport for a particular pyrotechnic material.

Given that the focus of this chapter is developing and evaluating a number of compu-
tational tools, a significant emphasis is placed on descriptions of the methodology; in the
section that follows, we describe the details of image segmentation, the mapping of the re-
sulting segmented micro-structure to a spatially-varying conductivity field, and the finite
element method (FEM) analysis. In the Results section, we present sample results for the
effective conductivity obtained in this manner, and compare these to flash diffusivity exper-
iments. Finally, we conclude with a summary of the methods and tools, and discuss future
areas of improvement.

Methods

The experimental micro-structure data set consists of focused ion beam scanning electron
microscopy (FIB-SEM) imaging of a small sample of a KClO4/Ti mixture corresponding to
the TKP-IP pyrotechnic material. This material was not compacted prior to FIB-SEM
imaging. The data were obtained with a resolution of 38.5 × 48.8 × 40 nm per voxel in
the x,y and z directions respectively, where the z-direction corresponds to the direction of
FIB sectioning (i.e. normal to the plane of the images). The total 3D extent (or field of
view) of the imaged region is ∼ 38× 34× 10 µm. Unfortunately, characteristic dimensions
of KClO4 particles approach the field of view dimensions, meaning that a single image stack
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may not be a statistically representative sample of the material. A larger field of view can
be attained, but this comes at the cost of decreased resolution, a compromise that must be
made for virtually all imaging techniques. Nevertheless, for the purposes of developing and
testing overall workflows, these dimensions are adequate.

Image segmentation

A sample image from the FIB-SEM image stack that we use here is shown in figure 5.1(a).
Small black regions correspond to void space, large dark-gray crystalline particles are KClO4

particles, and the white/light gray microporous material is the Ti phase. The full data
set consists of 250 such images corresponding to different serial sections of the material,
which together form an image stack that is a 3D representation of the micro-structure. The
image data set is therefore a 3D array of 8-bit voxels, with each voxel having a grayscale
value between 0 and 255, where 0 corresponds to black and 255 to white. The first step for
any quantitative analysis of the micro-structure is to identify different spatial regions with
different materials, a process we refer to as image segmentation (in some contexts, image
segmentation is taken to mean the separation of an image into distinct physical features; in
this case, the relevant features are simply the three material phases, but more sophisticated
image segmentation would also resolve distinct particles). Ideally, one could simply threshold
the grayscale values for different materials, so that a given grayscale range corresponds to
a particular material. We have found this to yield poor quality segmented images, partly
because of noise in the images, as well as overlapping grayscale ranges for different materials.
A more sophisticated protocol was employed, as outlined next.

First, images were aligned and cropped to remove any imaging artifacts near edges, and
ensure that all edges are aligned. To remove noise in the images, a bilateral filter [86] was
applied to each image, which has the effect of smoothing noise in the image while minimizing
any blurring of actual feature edges (see Figure 5.1(b)). Next, a two-value threshold opera-
tion was carried out, with the lower and upper threshold values set so as to isolate the KClO4

phase (in Figure 5.1(c), all regions that are not deemed to be part of the KClO4 phase are
colored black). To remove erroneous small features, a series of 3 image erosion followed by
3 dilation operations were then carried out (Figure 5.1(d)). The process was then repeated
to isolate the Ti phase (Figure 5.1(e)), and any remaining regions that were neither in the
KClO4 or Ti phase were assigned as void space to produce the final segmented image in
Figure 5.1(f). All image processing was carried out using the open source, freely available
OpenCV image processing library [7], which allows for simple Python scripting that easily
automates the entire process. The only manual adjustments were the threshold values, but
these only needed minor adjustments for different portions of the image stack, as the overall
grayscale intensity does not vary significantly in the sectioning direction. Additional auto-
mated thresholding algorithms (e.g. Otsu’s method [68]) were also explored; for cases where
the overall contrast varies spatially within each image slice, adaptive thresholding schemes
may be appropriate. For the present case, these more advanced thresholding algorithms
were not found to be necessary. Furthermore, in the current version of the OpenCV li-
brary, both Otsu and adaptive thresholding implementations are designed strictly for binary
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(a) (b) (c)

(d) (e) (f)

Figure 5.1. The image segmentation process. The origi-
nal image (a) is treated with a bilateral filter (b), followed
by a two-value thresholding operation to isolate the KClO4

(dark grey) phase (c). Small features are removed by erosion
and dilation operations (d), and the process is repeated for
the Ti (light grey) phase (e). The final image (f) shows the
three segmented phases, where black, grey and white corre-
spond to void space, Ti and KClO4, respectively. See text
for additional details.
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segmentation, so their use for the present three-phase segmentation case is problematic.

Generating a finite element mesh from segmented voxel data

We initially hoped to create explicit three-dimensional models of particle packs based on
the FIB-SEM data discussed above. Ideally, the set of voxels corresponding to each feature
(particle) could be identified from the image stack, and a 3D-surface mesh could be generated
to represent each such object. The surface meshes for all objects could then be imported
into a meshing software package (e.g. Cubit), and volume meshes would be generated.
The advantage of this approach is that the resulting model potentially includes an explicit
description of the composite material, including all particle boundaries. This would allow for
more sophisticated thermal analysis (e.g. inclusion of thermal contact resistance, convection
in pore space, etc.).

While a number of algorithms and tools for precisely this task have been developed [53, 30]
and are well-established in fields such as biomedical imaging and modeling, automotive
engineering and geophysics, their success is highly dependent on the input images. In the
present case, the nature of the images (or more precisely, the particles imaged) unfortunately
renders this approach infeasible. For instance, the Ti region is clearly not made up of discrete
particles that can be identified as distinct image regions; on the contrary, the small-scale
variations in the porous Ti micro-structure are convoluted with void regions and are not well-
resolved by the FIB-SEM technique. Even the KClO4 particles, which are well-imaged and
have clear boundaries, cannot be readily identified as separate objects when they are in close
contact. We have nonetheless attempted to carry out such image segmentations and model
generation with limited sections of the image stack. Although we were not successful in
creating a useful model, the expertise acquired and the development of associated workflows
has already proven fruitful in other related efforts.

Instead of attempting to generate computer models with explicit geometric represen-
tations, we have adopted a much simpler approach, where only the spatial variation of
material properties is captured. The basic approach involves generating a structured three-
dimensional mesh corresponding to the dimensions of the image stack, then assigning spatially-
varying mesh-based thermal properties corresponding to the spatial distribution of the dif-
ferent components in the pyrotechnic material. Since we aim to use the finite element
method for thermal analysis, we use a recent technique implemented in Goma, a Sandia-
developed, open source finite element code [77, 78]. We refer to this mapping procedure
as voxel-to-mesh mapping. The implementation has been discussed in greater detail in a
tutorial/memorandum that will be incorporated in the Goma documentation in the near
future.
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Thermal analysis

The voxel-to-mesh technique results in a structured mesh with an associated spatially-
varying thermal conductivity k(x) based on the input segmented voxel data set. This mesh
forms the basis for the present thermal analysis calculations. The relevant governing equation
for our present purposes is simply a steady-state diffusion equation with a spatially-varying
diffusivity k(x):

∇ · (k(x)∇T ) = 0 (5.0.1)

In all cases, a temperature difference is applied in the z-direction by setting T to 0 and
1 at opposing faces of the simulation domain (simple Dirichlet boundary conditions, where
T (z = 0) = 0 and T (z = L) = 1). No-flux boundary conditions are used in the x and y
directions. The spatial dimensions in equation 5.0.1 correspond to those of the FIB-SEM
sample, and the conductivity is expressed in units of W/m/K. Equation 5.0.1 is solved with
Goma’s standard full Newton solver routines, using linear (Q1) basis functions to represent
the solution. A conjugate gradient algorithm with no preconditioner is used to solve the
resulting linear system.

We define an effective property of a composite material as equivalent to the conductivity
of a homogeneous medium that results in the same heat flux for a given applied temperature
difference and geometry. For a homogeneous material with conductivity keff , equation 5.0.1
reduces to a trivial one-dimensional case, with the heat flux qh given by qh = −keff∆T/∆z,
where ∆T and ∆z are the temperature difference and the size of the domain in the z
dimension, respectively. From the numerical solution to equation 5.0.1, the equivalent heat
flux qnum can be computed as the integral over the x and y dimensions at any fixed value of
z:

qnum =
1

Axy

∫∫
−k (x)

dT

dz

∣∣∣∣
z=L

dx dy (5.0.2)

Here, we have taken z = L as the x-y plane for flux calculations, but any other value will
work, provided a sideset can be adequately defined. Axy is the surface area of the domain in
the x-y plane.

Equating the computed flux qnum to the expression for the homogeneous case qh, we
obtain the following expression for the effective conductivity keff :

keff =
qnum∆z

∆T
(5.0.3)
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Results

The input to the voxel-to-mesh procedure is the full segmented three-dimensional voxel
data set, prepared from the FIB-SEM data as discussed in figure 5.1 and related text.
However, instead of distinct voxel intensities, each phase is assigned a conductivity value.
Initially, we simply used the pure component conductivities for KClO4, Ti and air; however,
it is clear that the Ti-rich phase is not pure Ti, but rather a complex microporous structure
with variations below the resolution of the FIB-SEM. Since we cannot resolve this structure
even in terms of spatial variations of the conductivity, we use a Bruggeman effective medium
approximation [8] to calculate the conductivity of the Ti-rich phase, where we assume the
Ti-rich phase is simply a two-phase mixture of pure Ti and air. Its effective conductivity
keff,T i is then given implicitly by:

φTi
kTi − keff,Ti

kTi + 2keff,Ti

+ (1− φTi)
kair − keff,Ti

kair + 2keff,Ti

= 0 (5.0.4)

Here, kTi and kair are the pure component thermal conductivities of Ti and air, set to 21.9
and 0.025 W/m/K, respectively. Of particular importance is φTi, the volume fraction of
Ti in the Ti-rich phase, not to be confused with the overall volume fraction of Ti in the
mixture. Since we cannot ascertain φTi from the FIB-SEM images, we allow it to be a
variable parameter in the thermal analysis calculations. The KClO4 region is assumed to
have the same thermal conductivity as KClO4, set here to 0.47 W/m/K.

Figure 5.2(a) shows a three-dimensional representation of the conductivity field corre-
sponding to φTi = 1 (equivalently, keff,T i = kTi). This is to illustrate the voxel-to-mesh
mapping procedure, and the spatial heterogeneity in the thermal conductivity. The resulting
temperature field is shown in figure 5.2(b), where heterogeneity is again apparent. Applying
the analysis discussed above to compute the effective conductivity of the sample from the
finite element calculation (see equations 5.0.2 and 5.0.3), we obtain a value of keff ≈ 6.9
W/m/K.

In figure 5.3, we plot the effective conductivity keff as a function of the size of the back-
ground mesh used for the voxel-to-mesh mapping. The mesh size refers to the size of a single
element, in this case the side length of the hexahedral elements used for the background
mesh. A smaller value therefore corresponds to a finer mesh. We observe no significant
sensitivity of the computed keff value to the mesh size, and therefore use a mesh size of 10
voxels for all remaining calculations.

We have repeated the analysis above to obtain keff values for φTi in the range 0 to 1. For
each φTi value, the Bruggeman effective medium approximation (equation 5.0.4) is applied
to obtain the effective conductivity of the Ti-rich phase, keff,Ti. This is then assigned to the
voxels corresponding to the Ti-rich phase (e.g. gray region in figure 5.1), and the voxel-
to-mesh mapping and thermal analysis are carried out for each φTi value. The resulting
keff values are plotted together with experimental flash diffusivity data in figure 5.4 as a
function of the percent theoretical maximum density (%TMD). The %TMD refers to the
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Figure 5.2. Thermal conductivity (a) and temperature
field (b) in the finite element model.

Figure 5.3. Sensitivity of computed effective conductivity
to mesh size
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percentage of the maximum particle packing achieved, assuming that the solid phases are
incompressible and any increase in density is a result of rearranging the solid material to
displace air. Corresponding φTi values for the simulation data are indicated in using the top
x-axis in figure 5.4; note that the %TMD value does not reach 100% even at φTi = 1, since
there is additional void space outside the Ti-rich phase (see black regions in figure 5.1(f)).
The sharp increase in computed keff values (as well as the Bruggeman approximation to
this case) is accurate and is a result of the much higher conductivity of Ti as compared to
the other components. However, it does suggest that φTi values above ∼0.3 are likely not
realistic for the Ti-rich phase of the FIB-SEM material.

Also plotted in figure 5.4 is a three-phase Bruggeman approximation for the TKP-IP
material based on the experimentally known weight fractions of the different components
and %TMD values (data labelled TKP-IP, 3-phase Bruggeman). Although the experimental
data here are in a fairly limited range, the Bruggeman approximation is surprisingly success-
ful at predicting effective conductivity values. Additionally, we have plotted the Bruggeman
approximation for the FIB-SEM material, where three phases are considered: the air phase
and the KClO4 phases, with corresponding pure component conductivities and volume frac-
tions as identified from the image segmentation; and the Ti-rich phase, with its conductivity
keff,Ti set based on the two-component Bruggeman model (equation 5.0.4), which is the same
value that is input to the voxel-to-mesh mapping. At relatively low φTi values, the Brugge-
man approximation again tracks the simulation data surprisingly well; however, at higher
φTi values (> 0.5), the Bruggeman approximation fails for this case (this is more apparent
in figure 5.4(a)).

The direct comparison of keff values computed based on FIB-SEM data to experimental
flash diffusivity data is not straightforward. In the flash diffusivity experiments, the increase
in %TMD corresponds to increased compaction of the entire sample. In the FIB-SEM
material, the sample is not compacted prior to imaging, and the increase in %TMD in
figure 5.4 is only due to changes in φTi, the assumed volume fraction of Ti in the Ti-rich phase.
Therefore, a direct comparison between experiments and simulations is only valid at low
experimental %TMD values. At higher values, the simulation data presumably corresponds
to a material where the %TMD value is artificially too high because of an unrealistically high
φTi value. For low %TMD values, the agreement in computed and measured keff values is
quite good (within ∼20%), with a corresponding φTi value of ∼0.3.

To check whether this is a reasonable value of φTi, we can compare the known overall
weight fractions of Ti and KClO4 (0.33 and 0.67, respectively) to those implied by φTi

values for the FIB-SEM material. The latter are simple functions of φTi and the volume
fractions of the Ti-rich phase, KClO4 and air as measured from the FIB-SEM segmented
images. Figure 5.5(a) shows this comparison. The horizontal dashed lines correspond to the
experimentally known values; where these intersect the solid curves is the φTi value that gives
the same overall mixture weight composition. The relevant φTi value is ∼ 0.37, somewhat
higher but in reasonable agreement with φTi ∼ 0.3, the value at which good agreement
is obtained in keff values. We also plot the effective conductivity of the Ti-rich phase in
figure 5.5(b) as a function of φTi, as given by the two-phase Bruggeman approximation,
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Figure 5.4. Computed and experimental effective conduc-
tivity as a function of %TMD. See text for additional details.
Panel (b) is simply an enlarged portion of the low keff region
in panel (a).
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equation 5.0.4. In future work, measuring the conductivity of the Ti-rich component powder
in isolation may be of interest and would provide validation of the Bruggeman approach
for this system. Additionally, repeating the imaging and segmentation on a packing of just
KClO4 particles would be useful as data exist for thermal diffusivity of these materials.

Conclusions

We have applied a set of tools aimed at creating detailed models for thermal analysis of
complex heterogeneous materials based directly on experimentally obtained micro-structure
data. The present work represents only a cursory attempt at tackling this problem. The
agreement obtained between computed and measured effective bulk conductivity values is
encouraging, sufficiently so to motivate future work in this area. However, given the many
approximations introduced throughout the modeling workflow, as well as the differences be-
tween the experimental system and the simulation system, this agreement may be fortuitous.
Furthermore, while the computed value of the effective conductivity is reasonably close to
the measured value, the level of confidence in this value is relatively low, and likely will only
be useful for qualitative insights into microstructure-property relationships, rather than a
reliable, quantitative value for engineering and qualification purposes. We also note that we
have only briefly addressed the sensitivity of the computed values with respect to the mesh
size, but a much larger parameter space needs to be addressed to ascertain the precision
of the reported value (e.g. sensitivity to different thresholding/segmentation techniques;
multiple FIB-SEM samples of the same material; assumptions about the pure component
conductivities).

Several shortcomings have already been identified in the overall approach presented
above. Perhaps the strongest is the lack of information in the model relating to interfa-
cial transport. This has been addressed in a different context in later chapters of this report;
to include explicit models of thermal contact resistance for the 3D reconstruction approach,
a far more sophisticated segmentation tool is needed that can separate individual particles
and solid regions with high fidelity, rather than simply distinguishing the different phases.
As already discussed, this may not be feasible for the materials studied here, at least given
the current limitations of the FIB-SEM technique. Additionally, obtaining detailed infor-
mation about the interfacial geometry, chemistry, and the nature of inter-particle contacts
is difficult, especially if a full computational reconstruction is to be attempted. More likely,
such a model would be more useful if interfacial properties are treated as model variables,
rather than attempting to fully discern them from micro-structure images. As such, there
is significant potential to explore qualitative trends in bulk properties as a function of var-
ious interfacial properties; in turn, these surface properties could potentially be related to
processing conditions (e.g. compression, particle surface characteristics, chemical modifica-
tions).

Finally, the comparison between simulations and experiments is also challenging due to
the limited experimental data set. In particular, it would be of interest to repeat the analysis
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Figure 5.5. Variations in other properties as a function of
φTi, the assumed volume fraction of Ti in the Ti-rich phase.
Panel (a) shows the overall weight fractions of Ti and KClO4

in the mixture, while panel (b) shows the effective conduc-
tivity of the Ti-rich phase according to equation 5.0.4
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with FIB-SEM data for various levels of compaction (larger range of %TMD values), as well
as multiple FIB-SEM data sets for the same material. In addition, a significant discrepancy
in length scales exists between the flash diffusivity experiments, which are carried out with
samples of dimensions on the order of several millimeters, whereas FIB-SEM imaging is
limited to a field of view of several tens of microns this may contribute to variability of the
computation results as the representative volumes may be smaller than the macroscopic,
homogeneous scale.

It is hoped that the work discussed here will form a useful basis for related work in the
future. The tools and workflows employed herein - automated image processing and segmen-
tation; voxel-to-mesh mapping; thermal analysis of complex materials - have already proven
fruitful in related work at Sandia National Laboratories, and a much stronger understanding
of their potential as well as limitations now exists as a result of this work.
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Chapter 6

Computational Thermal Analysis in
Numerically Simulated Particle Packs

In this chapter, we detail results of a stochastic simulation method newly implemented
in LAMMPS for obtaining insight and data to develop coarse-grained models able to bridge
scales in complex structured systems. The scales in focus here are defined by a characteristic
particle size and a macroscopic, homogeneous scale. Hence, models are sought that bridge
these scales, or alternatively, which are consistent on the meso-scale that is between these two
scales. We point to an approach that seems capable, by capturing the relevant phenomena,
of accomplishing this goal and sketch some of the initial challenges associated with such an
approach.

In chapter 3 we reported results for conduction in fractal structured objects, partic-
ularly in fractal clusters taken from bond percolation networks. There it was seen that
“anomalous” transport in terms of the temporal or transient scaling of thermal conduction
on/through these structures was related to the spatial structure of the network. Here we
describe conduction on a different random network formed by a pack of mono-sized spheres.
Percolation-like behavior (in a continuum sense – i.e., the “inverse Swiss-cheese problem”
[3]) is still seen as a critical packing packing fraction is approached, but the conduction on
the resulting network is not anomalous (i.e., MSD ∼t, or Fickian) in the long time limit [26].
In fact, the non-Fickian behavior of the MSD that is observed is shown to be governed by
small-scale features of the particle packing. We analyze this in terms of narrow escape or
mean first passage time and show how this relates the the non-Fickian behavior of the MSD.
Also, the non-Gaussian behavior of the probability distribution associated with the location
of a random walker at a given time is illustrated. These two “anomalous” features of the
transport related to the inhomogeneity of the structure are taken to be the main phenomena
to be captured in a consistent scale-bridging modeling approach.

Random Walk in Jammed Particle Packs

We report stochastic simulations of equilibrium diffusion through packs of spherical parti-
cles in the limit of a perfectly insulating surrounding medium and vanishing bulk pressure of
the particle pack. The time dependence of various diffusion properties is resolved over several
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orders of magnitude. Two well-separated time regimes of normal diffusion (MSD ∼ t) are
observed. The first corresponds to diffusion on scales smaller than individual particles, while
the latter is the expected large-scale and long-time diffusion. The intermediate anomalous
diffusion regime and the long-time value of the diffusion coefficient are both controlled by
the contact between particles, which in turn depend on the global pressure p of the particle
packs. Scaling laws are established for both the time required to recover normal diffusion
(t∗) as well as the long-time diffusivity (D∞), wherein t∗ ∼ p−0.5 and D∞ ∼ p0.5. The mean
first passage time (MFPT) associated with the escape of random walkers from the particles
is shown to control both t∗ and D∞ in the low pressure limit.

Diffusive transport through heterogeneous media has been a long-standing area of in-
terest [89, 76], with wide-ranging applications in biology, geophysics and materials science.
Heterogeneous media consisting of packed particles are of particular interest for industrial ap-
plications that involve powder processing routes, and transport through such particle packs
can have significant implications for the resulting material properties. Much of the motiva-
tion for the present work comes from energetic and pyrotechnic material applications, where
a strong understanding of thermal conduction through particle packs is an essential first step
in predicting bulk material properties and ultimately product performance. In particular,
we explore the relationship between the bulk particle pack pressure, which can be measured
and controlled experimentally, and microstructural features that govern transport, such as
the interparticle contact area, and diffusive transport over a broad range of length and time
scales.

One of the greatest challenges in modeling heterogeneous media comes from the com-
plexity of the underlying microstructure and the large separations of length and time scales
that often arise. An extremely rich literature exists describing effective medium theories
for predicting transport properties of heterogeneous media [50, 8, 58, 87, 89, 76], but in
all cases limitations exist with regard to the nature of the underlying microstructure and
range of applicability. In this work, we carry out simulations of diffusive transport using an
explicit geometric representation of the microstructure. While traditional grid-based numer-
ical methods (e.g. finite element or finite difference) have been successfully used for explicit
modeling of transport [73, 47] and mechanics [59] in complex geometries, we have employed
a stochastic method based on a simple random walk algorithm [88] to model diffusion in
computationally generated particle packs. Due to the complexity of the microstructure and
the large separation of length scales inherent to the present systems, traditional grid-based
numerical methods are not feasible. Furthermore, the random walk approach allows us
to quantify equilibrium (or steady-state, isothermal) transport dynamics in a way that a
continuum-based approach cannot (e.g. time dependence of effective diffusivities).

We explore both disordered and ordered particle packs and compare key diffusion char-
acteristics between them. As a canonical disordered system, we have used three-dimensional
jammed packs of monodisperse spherical particles. The jamming transition is a surprisingly
universal phenomenon common to disordered systems ranging from granular materials to
glasses, foams, colloidal suspensions and traffic patterns, wherein a disordered fluid systems
becomes rigid (or mechanically stable) at a sufficiently high density. The characterization of
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the structural and mechanical properties of jammed systems has received significant interest
in recent years [52, 17, 66, 79], and a number of universal scaling laws suggestive of a phase
transition have been uncovered. For the present purposes, we use granular packs of friction-
less, monodisperse spheres near the jamming transition as representative disordered systems.
Furthermore, the global system pressure of the jammed particle packs, which approaches zero
near the jamming transition point ‘J’, is a convenient macroscale parameter that controls
the nature of the interparticle contacts. We also compare results to an ordered simple cubic
lattice (SCL) system with comparable interparticle contact areas; however, in this case the
interparticle contact area is a single value, whereas in the jammed configurations, a wide
distribution of contact areas is characteristic of each pressure.

In all cases, we investigate diffusive transport through particle packs assuming a perfectly
insulating surrounding medium, so that random walkers only move through the particle
phase. The interparticle contacts therefore play a crucial role in controlling the effective
diffusivity, particularly at low pressures, where the interparticle contact areas are extremely
small compared to the particle size. This gives rise to two distinct diffusion domains, one
governed by diffusion inside the particles, and the other by rare crossings of random walkers
between neighboring particles. As the pressure is decreased, the separation in time scales for
these domains diverges, and inter-particle hopping becomes the dominant, transport-limiting
process. We therefore discuss the transport problem in the context of narrow escape/mean
first passage time analysis [75]. In particular, a recent analysis of mean first passage time
from a sphere with multiple small absorbing windows [14] provides the essential parameters
and scaling laws relating transport properties to overlap areas and pressures. Although these
features arise partially due to the idealized nature of the systems considered here (perfect
spheres with interfaces consisting only of small overlaps; perfectly insulating medium), the
notion of transport governed by a combination of bulk diffusion at the particle scale and
rate-limiting interfacial transport is common to a broad range of physical situations.

Methods

Jammed particle packs were prepared as discussed in recent work by Silbert [79]. Briefly,
systems consisting of N=1000 particles of diameter d = 1 and mass m = 1 were placed in
a cubic simulation box with periodic boundary conditions. Interparticle interactions were
modeled using a pairwise frictionless Hookean spring-dashpot force Fhk, which is active only
when particle pairs are in contact (i.e. when the separation distance rij < d):

Fhook = knδn− 0.5m(γnvn − γtvt) (6.0.1)

Here, kn is the elastic constant for normal contact, δ is the overlap distance (δ = d − rij),
n denotes the unit vector along the line connecting the centers of the two particles, and vn

and vt are the normal and tangential component of the relative particle velocity, and γn and
γt are the normal and tangential viscoelastic damping constants.
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For these systems, the pressure is given by the virial:

P =
1

3V

∑
i

∑
j>i

rij · Fij (6.0.2)

Notably, this leads to the pressure scaling as P ∼ δ for the Hookean force law (eq. 6.0.1)
Here and in the remainder of this paper, all quantities are unitless. Equivalently, they are
expressed in simulation units, where the mass unit is the particle mass m, the length unit is
the particle diameter d, and a time scale is set based on the diffusion coefficient inside the
particles D0; without loss of generality, all of these quantities are set to unity.

Initially dilute configurations of particles were compressed to a volume fraction of φ =
0.65, and allowed to relax to a mechanically stable state. The box size was then increased,
allowing the particles to reach a new mechanical equilibrium at each step. Visualizations of
the particle packs at a high and low pressure are show in figure 6.1, with particles color-coded
by the volume-averaged mean first passage time (MFPT) as given by the analytical expression
of Cheviakov et al [14]; this will be discussed in greater detail in subsequent sections. Of
note are the significant differences in the MFPT values between the two pressures, where
the low pressure, for which interfacial contact areas are extremely small, results in MFPT
values several orders of magnitude larger.

(a) p=0.004 (b) p=0.0000004

Figure 6.1. Jammed particle packs at low and high pres-
sures. Particles are colored by their volume-averaged mean
first passage time (t̄). See text for more details
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Prior to random walk simulations, a cluster analysis is performed on each configuration,
where clusters are defined so that there is a connecting path along particle contacts among all
particles within a cluster. Any particles that are in clusters other than the main percolating
cluster are then removed. This is carried out to ensure that random walkers are not placed
in isolated clusters that they can never escape. In practice, this results in the removal of
only <20 isolated particles (so-called “rattlers”) for the pressures tested.

The random walker algorithm that we have employed is closely based on the algorithm
developed by Kim and Torquato [88, 44, 45], which has its roots in earlier works focused
on predicting the effective conductivities of heterogeneous media [33]. The basic premise
is to carry out a continuous-time, off-lattice random walk within a heterogeneous structure
of interest. Within each region, the time elapsed for a random walker move is related to
the conductivity in that region, and the ratio of conductivities of neighboring regions is
used to determine the probability of crossing internal boundaries that separate different
regions. The long-time displacement of the random walkers can then be related to the
effective conductivity of the heterogeneous medium. For our present purposes, the time-
dependence of various properties is also of interest. As such, a key difference in our algorithm
as compared to that of Kim and Torquato is that at each integration step, the time elapsed
must be the same for all walkers. This leads to slightly more complex simulation algorithm,
but it simplifies the subsequent analysis of time-dependent properties. We therefore force all
random walkers to have the same net displacement ∆xo (and therefore the same elapsed time)
at any given integration step. The net displacement ∆xo is selected based on computational
considerations, and does not affect the overall results. We have selected ∆xo = 0.02d for
all cases, where d is the diameter of the particles. An additional step size constraint ∆xi is
required, as outlined below, which effectively sets the spatial resolution of the algorithm.

At the start of each simulation, a large number of random walkers are randomly placed in
the interior of particles. For a given walker at the start of a step, the distance to the edge of
the particle that it is currently in is computed (denote this distance ∆xp). If this distance is
greater than ∆xo, the walker is translated a distance of ∆xo in a randomly chosen direction,
and the time step is completed. The time associated with this move is simply ∆x2

o/6D,
where D is the bulk diffusion coefficient inside the particles, which we set to unity with no
loss of generality. On the other hand, if ∆xp is less than ∆xo but greater than ∆xi, the
random walker is translated a distance ∆xp in a randomly chosen direction, but the time
step is not completed, and its initial position is stored. The process is repeated until the
total displacement of the walker is greater than ∆xo, at which point the random walker is
translated backward along the last segment of its motion, such that its net displacement
during the time step is exactly equal to ∆xo. This then completes the time step. If at
some point ∆xp < ∆xi, the random walker is translated a distance of ∆xi in a random
direction; if this move results in the random walker being located outside of any particle, it
is reflected back into the interior of the particle by a distance ∆xi in a new random direction.
As expected, the value of ∆xi can affect the measured properties, and must decrease as the
particle contact size decreases (i.e. lower pressures require smaller values of ∆xi); we have
therefore tested several values of ∆xi for the relevant range of pressures until acceptable
convergence of the desired properties was obtained.
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Results

Random, jammed particle packs

Random walk simulations were carried out for particle packs corresponding to a range
of pressures spanning several decades from p = 4× 10−7 to p = 0.04. In all cases, a million
random walk steps were performed prior to sampling of diffusion properties to ensure an
equilibrated distribution of the walkers, and a moving time origin approach was used for all
analyses. Again, the diffusion coefficient inside the particles (D0) was set to unity.

Figure 6.2 shows several key measures characterizing the diffusion of random walkers
in jammed particle packs at several pressures. As seen from the plot of mean squared
displacement (MSD) in Figure 6.2(a), the short-time diffusion behavior is Fickian (MSD ∼ t)
for all pressures. This corresponds to diffusion of random walkers inside individual particles,
on time scales shorter than that at which random walkers encounter particle boundaries. At
intermediate times (starting at t ∼ 10−1), there is a subdiffusive plateau, which is broader
and more pronounced for lower pressures (closer to the true jammed state). At sufficiently
long times, linear diffusive behavior is once again recovered for all pressures. The time
required to reach the long-time linear regime increases with decreasing pressure.This time-
dependent diffusion behavior can be expressed either as a time-dependent effective diffusion
coefficient D, such that MSD = D(t)t/6, or a time-dependent exponent, so that MSD ∼
tα(t)/6. The inset of Figure 6.2(a) shows plots of α for various pressures, calculated as
α = d log MSD/d log t. Fickian diffusion occurs at short and long times where α approaches
unity. Conversely, figure 6.2(b) shows the time-dependent behavior of the effective diffusion
coefficient D(t).

In order to further quantify the transition between the various diffusion regimes, we
define the characteristic times t∗0.95 and t∗0.99 such that α(t∗0.95) = 0.95 and α(t∗0.99) = 0.99
near the transition from the intermediate subdiffusive regime back to the Fickian regime.
These values then represent characteristic times at which bulk Fickian diffusion is recovered.
In Figure 6.3(a), we plot t∗0.95 and t∗0.99 as a function of pressure for the jammed particle
configurations. In both cases, we note a clear scaling of t∗ ∼ p−0.5, with perhaps the exception
of the highest few pressures. Similarly, in Figure 6.3 (b), we plot the long-time plateau value
of the diffusion coefficient (late-time values in Figure 6.2(b)) as a function of pressure, and
note a clear scaling of D∞ ∼ p0.5.

Mean first passage times

In order to understand the scaling behavior observed for t∗ and D∞, we analyze the
diffusion of random walkers in the context of a narrow escape, or first passage time prob-
lem [75]. Specifically, we are interested in the first passage time associated with a random
walk escaping the interior of a given particle to any of its neighboring particles. In order
to do so, a random walker must reach one of the small circular contact areas that separate
its starting particle from its neighboring particles. The analogous problem has been studied
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(a) Mean squared displacement (b) Diffusion coefficient

Figure 6.2. Diffusion characteristics of random walkers in
jammed particle packs. Inset in panel (a) shows plots of the
exponent α, where MSD = Dtα(t)/6.

Figure 6.3. Characteristic times at which Fickian diffusion
is recovered (a) and late-time value of the diffusion coefficient
(b) as a function of pressure in jammed particle packs.

105



by Cheviakov et al [14], who derived an analytical solution for the mean first passage time
MFPT(x) as a function of the starting position x and the size and relative orientation of
small circular openings on the surface of a spherical particle. The analytical solution requires
that the radius of the circular openings rc be much smaller than the radius of the particle
r [14], which is satisfied for all cases of interest here. For a given particle, we are interested
in the volume-averaged MFPT, i.e. the MFPT averaged over all starting positions x and
random walk realizations inside the particle. We refer to the volume-averaged MFPT as t̄.
This quantity was also derived by Cheviakov et al (see equation 2.44 of their work [14]). We
have computed t̄ for all particles for the p = 4x10−5 system using the analytical expression
of Cheviakov et al as well as random walk simulations. For the latter, we used a modification
of the algorithm described above, where the elapsed time is allowed to be different for each
random walker (i.e. no constraint is placed on the displacement at each time step). Indepen-
dent simulations were carried out for all particles, where 10,000 walkers were initially placed
at random locations inside each particle, and the average elapsed time for walkers to escape
was computed. The results show some sensitivity to the total number of random walkers, as
well as other simulation parameters, but the values thus obtained are well-converged for most
particles. Figure 6.4(a) shows comparisons of the t̄ values obtained using both the analytical
expression of Cheviakov et al and direct simulation results. The agreement is strong, and
we attribute small discrepancies to convergence errors in the simulation data. We therefore
use the analytical expression for subsequent analysis, where t̄ values were computed for all
particles at all pressures. For each pressure, the median value of t̄, denoted tm, is used as
a representative volume-averaged MFPT. In Figure 6.4(b), we plot t∗95/tm as a function of
pressure. At all but the highest pressures, the ratio is constant, indicating that the charac-
teristic time t∗ is set by the MFPT, i.e. t∗ ∼ tm. This shows that large-scale diffusion at low
pressures is limited by the ability of random walkers to escape from a given particle to its
neighbors, which in turn is governed by the interparticle contacts.

The constant value of ∼ 10 to which the t∗95/tm ratio converges is not particularly in-
structive, since it is convoluted by the fact that tm is a median value of the volume-averaged
MFPT. Instead, we plot the mean squared displacement (MSD) of the random walkers at
t = t∗95 in the inset of figure 6.4(b). This quantity, which we denote MSD∗, converges to a
constant value of ∼6 as the pressure decreases. This can be readily interpreted as the average
squared distance that a random walker must travel before its trajectory exhibits regular dif-
fusion characteristics, i.e. MSD ∼ t. The corresponding distance is

√
MSD∗ ∼ 2.5; in other

words, in the low-pressure limit, where diffusion is dominated by rare event interparticle
hopping, a walker must carry out ∼2-3 such hops to reach the diffusive regime.

We have established that t∗ ∼ tm, and Figure 6.3 shows that t∗ ∼ p−0.5. It therefore
follows that tm ∼ p−0.5, which can now be fully explained. First, we note that to leading
order, the analytical expression for the mean first passage time t̄ given by Cheviakov et al
leads to t̄ ∼ r−1

c , and therefore tm ∼ r−1
c (in their notation, the radius of the contact region

rc is denoted as ε) [14]. Second, given the Hookean contact potential used in preparing the
jammed particle configurations, it is easy to show that p ∼ δ, where δ is the overlap distance
between neighboring particles (δ = 2r − rij, with rij the distance between particle centers).
The simple geometric relationship between rc and δ shows that rc ∼ δ0.5. Finally, combining
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Figure 6.4. Mean first passage times. (a) Comparison
of volume-averaged MFPTs computed from simulations and
from the analytical expression of Cheviakov et al [14]. The
main figure shows the comparison of the histograms, the in-
set shows the direct comparison of values for all particles,
with a solid line corresponding to a slope of unity and zero
intercept. (b) Relationship between t∗95/tm and MFPT for all
pressures. Inset shows corresponding MSD∗ at t = t∗95; see
text for details.
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all of these relationships, we see that t∗ ∼ tm ∼ r−1
c ∼ δ−0.5 ∼ p−0.5. This explains the

scaling of t∗ ∼ p−0.5 observed in Figure 6.3(a).

The scaling behavior of the long-time effective diffusion coefficient D∞ can also be readily
explained by a similar argument. In the long-time limit, normal diffusion is recovered,
such that MSD ∼ t. For any t∗ value selected so that α is arbitrarily close to unity, the
corresponding MSD∗ will be constant at lower pressures (see inset of Figure 6.4(b) for t∗0.95,
which was defined such that α(t∗0.95) = 0.95). The long-time diffusion coefficient in this
case is then simply D∞ = MSD∗/6t∗, and so D∞ ∼ 1/t∗. Since we have established that
t∗ ∼ p−0.5, it then follows that D∞ ∼ p0.5, the scaling behavior noted in Figure 6.3(b).

Comparison to simple cubic lattice

Since nearest-neighbor inter-particle contacts appear to control the large-scale transport
properties in the particle packs considered here, it stands to reason that the behavior noted
thus far is not unique to the jammed configurations discussed thus far. We have therefore
repeated the analysis above for an arrangement of particles in a simple cubic lattice (SCL).
SCL systems are constructed such that the system pressure is equal to that of the jammed
particle packs, using the same Hookean contact potential. In the jammed configurations at
the lowest pressures, the average coordination number approaches a value of six, which is
the coordination number of the SCL systems. However, an important difference between
the two cases is that the size of the contacts and therefore the MFPT are single values in
SCL systems, as compared to the distributions noted for jammed packs. As expected, the
same average diffusion behavior presented above for jammed configurations is observed in
SCL systems, with two distinct Fickian diffusion time scales separated by a sub-diffusive
intermediate domain. We extract t∗95 and D∞ values for the SCL systems, and plot them
together with those previously shown for jammed systems in Figure 6.5. The match is
nearly quantitative, but more importantly, the same scaling behaviors are observed, where
t∗0.95 ∼ p−0.5 and D∞ ∼ p0.5. This is not surprising, since we have shown that this scaling
can be fully explained in the context of a first passage problem and several simple geometric
arguments, all of which are equally valid in SCL systems.

Summary

We have presented random walk simulations of diffusive transport in disordered particle
packs near the jamming transition. Two distinct linear diffusive regimes where MSD ∼
t are observed at short and long time scales, separated by an intermediate subdiffusive
regime. The first regime corresponds to regular diffusion in the interior of particles, while the
second regime is the expected long-time bulk diffusion behavior. The time scale separation
between the two regimes grows as the pressure decreases. This is caused by the corresponding
decrease in the size of interparticle contacts, which leads to the average diffusion behavior
being controlled by the ability of random walkers to escape from one particle to neighboring
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Figure 6.5. Key scaling behaviors in simple cubic lattice
particle arrangements as compared to jammed systems.

coordinated particles. We have analyzed this behavior in the context of a mean first passage
time problem, and have fully explained the t∗0.95 ∼ p−0.5 and D∞ ∼ p0.5 scaling observed,
where t∗0.95 is the characteristic time at which linear diffusion is recovered and D∞ is the
long-time effective bulk diffusion coefficient. The multi-scale nature of the diffusive behavior
as well as the scaling exponents are common to other particle arrangements, such as a simple
cubic lattice, so long as the interparticle contact overlap distances are much smaller than
the particle characteristic size. Overall, this work provides detailed insights into transport
through particulate media, where interfacial effects are likely to be dominant. Interfacial
models are the subject of the following chapter, but before that, the question of scale-bridging
models is addressed.

Further Model Development

Brownian motion can serve as a reasonable description of multi-scale heat conduction by
phonons [63, 94] and, of course, random walks are the stochastic process that underlies the
Heat Equation, the basic thermal transport process. However, classical random walk pro-
cesses in homogeneous, isotropic media are independent of the scale on which the process is
resolved, MSD ∼ t for any ∆x or ∆t. Here (recall Figure 6.2(a)), the diffusion of walkers is
not scale independent, in fact by effectively dividing-up an homogeneous, isotropic material
into slightly overlapping, equal-sized spherical chunks we have introduced a time scale (re-
lated to the ratio of the size of the spheres, d, to the amount of overlap, δ) – a mean time for
a walker to escape a spherical region. Hence, in this inhomogeneous material scale matters.
Either we must resolve the geometric structure of the particle pack, including the spherical
clumps of materials as well as the details of their mutual contact and solve for transport on
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this “quenched” random structure, which was accomplished above, or, assuming an isotropic
packing of spheres, we can average over the random microstructure leading to an “annealed”
description that captures the relevant scale dependence. The main task of this subsection
is to further demonstrate that the latter type of models can be applied to conduction (ther-
mal/electrical) in particle packs with the potential of resolving and bridging scales (here,
from sub-particle through particle-particle microstructure to homogeneous macro-scale). In
particular, in this subsection a certain so-called Continuous Time Random Walk model is
shown to capture (semi-quantitatively) the relevant scale dependent phenomena.

There are two main aspects of the phenomenology of “anomalous” and scale dependent
transport that we must address: (i) Non-Fickian (often subdiffusive) behavior at interme-
diate times (not just in the asymptotic long time limit); and (ii) non-Gaussian probability
distribution of location of walkers at a given time. Simple random walk processes on certain
structures (e.g., so-called blind and myopic ant random walks on fractal percolation clus-
ters) lead to anomalous long time/asymptotic or macro scaling of MSD with t (see [26, 6]).
Here, we must account for subdiffusive behavior at intermediate times related to the scale
dependent or multi-scale nature of transport in these particle packs. Non-Fickian behavior
is best demonstrated plotting the exponent on time in the MSD ∼ tα(t) relationship, where
α 6= 1 indicates non-Fickian. This is done in 6.6. In addition, recent work has highlighted
the non-Gaussian of the more fundamental jump distribution both experimentally as well
as through numerical simulations (see [92, 13]), showing it to be a general feature of scale
dependent relaxation phenomena in complex disordered materials.

A modeling framework to capture this behavior can be found in so-called Continuous-
Time Random Walks (CRTW) and Generalized Master Equations (GME). Examples of this
approach for disordered or heterogeneous materials can be found in (i) Klafter and Silbey [46]
who derive the Generalized Master Equation from ensemble averaging over microstructures
the master equation defined on a particular realization (for more on the relationship between
GME and CTRW see [43]); (ii) Sahimi [76] who develops an Effective Medium approach,
which also is a type of homogenization of structure (i.e., replace inhomogeneous, position
dependent diffusion constant with a transitionally invariant) and leads to memory (i.e., time
dependence in the material properties); and (iii) Chaudhuri et al. [13], who as alluded to
above, claim a “universal” phenomenology for mass transport in dense random particle-
based systems – random exploration of local cage and random jumps between cages leading
to dynamical heterogeneity (i.e., “particles that are substantially faster or slower than the
average”).

As the name suggests, the MSD is a second moment of the distribution of displacements
in the system and therefore characterizes just an aspect of the probability distribution of
the location of walkers. If this distribution is Gaussian, then the first and second moments
are sufficient to fully characterize it as the rest of the moments can be related to them. As
noted above, non-Fickian behavior of the second moment is often related to a non-Gaussian
nature of the underlying distribution [13, 92, 93]. This is indeed the case here as can be seen
in figure 6.7.

Plotted in Figure 6.7 are the jump distributions for the random walkers in the particle
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Figure 6.6. non-Fickian parameter β(t) (MSD ∼ tβ(t)) for
various pressures.

pack created with a pressure p = 0.0004. The different colors of the data are for different
times and are grouped into four classes for ease of comparison and to highlight certain qual-
itative features of the evolution. For each walker the displacement from its starting position
is calculated at a given time and all walkers, regardless of where they start, are used to
determine the probability of a given displacement as plotted in the figure. This is effectively
an ensemble averaged approach where it is implicitly assumed that grouping the random
walker data over the simulation volume is representative of the entire ensemble of possible
configurations that the random walkers might see. As can be seen in Figure 6.7(a), the early-
time evolution of the displacement distribution follows a Gaussian-like profile corresponding
to conduction in the homogeneous, isotropic material that makes up the particles. However,
by the end of the time segment represented by the early-time data, the spread of the walkers
is starting to slow relative to the spread in a homogeneous, isotropic media. This is an
indication that the walkers are interacting with the reflecting boundaries of the particles and
are thereby constrained on average. For the second segment of time represented by the data
in Figure 6.7(b) (dubbed “early-intermediate”), a shoulder can be seen to develop in the
jump distributions that travels up as time progresses. By late-intermediate times, as shown
in Figure 6.7(c), the tails of the distributions below the shoulder can be seen to stretch
out into an exponential form, indicating a broad range of walkers motions, while the inner
“core” of the distribution remains Gaussian in shape. Finally, as time progress to the late
stage the shoulder disappears and the tails, indeed the entire distribution, begins to recover
a more-or-less Gaussian shape, but with a width that spreads according to a different value
than that which characterized the early-time spread in the homogeneous, isotropic material
making up the particles. This phenomenology is generic to all of the relatively low pressure
systems (cf. Figure 6.9) where walkers are confined relative to a homogeneous, isotropic
media and represents the process by which the transition from transport on the sub-particle
scale through the particle-particle mesoscale to the bulk homogenized scale.

As noted, the distributions in Figure 6.7 clearly deviate from Gaussian form during
intermediate times. To quantify this deviation, the normalized excess kurtosis is commonly
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(a) (b)

(c) (d)

Figure 6.7. Jump distributions for walkers in jammed
particle pack prepared at p = 0.0004. (a) Early-time
jump distributions where effect of sphere boundaries can be
seen. Solid lines show Gaussian spread of walkers in ho-
mogeneous, isotropic materials with diffusion coefficient D0,
random walkers in particle pack spread relatively slower;
(b) early-intermediate time showing development of “shoul-
der” in jump distribution; (c) late-intermediate time showing
Gaussian inner region (dashed lined) and development of ex-
ponential tail (dotted line) in jump distributions; (d) Late-
time jump distributions showing return to nearly Gaussian
distribution of walkers (dashed line).
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(a) (b)

Figure 6.8. Non-Gaussian parameter for packs at vari-
ous pressures: (a) normalized excess kurtosis; (b) maximum
normalized excess kurtosis as a function of pressure.

used. As the odd moments of a symmetric distribution are zero, the ratio of the fourth and
square of the second, called the kurtosis, is a convenient metric for determining the form of
a distribution relative to a Gaussian, which has gives a well know value of this ratio. The
excess, relative to a Gaussian distribution, normalized, by the Gaussian value, kurtosis is
given by

α2(t) =
〈∆x(t)4〉

3 〈∆x(t)2〉2
− 1 (6.0.3)

This is plotted in Figure 6.8(a) for walker displacement distribution in packs generated at
various pressures. For a given pressure, the variation of this parameter follows the qualitative
features of the jump distributions noted above: (i) initially the distribution is zero indicating
a Gaussian shape; (ii) this is followed by a negative deviation indicating a decrease in the
strength of the tails of the distribution relative to Gaussian – walker confinement effects;
(iii) then comes an increasing and decreasing positive deviation from Gaussian, or stretching
of the tails; (iv) finally a Gaussian-like normalized excess kurtosis is recovered. It is also
interesting to note that as the pressure decreases, the maximum deviation from Gaussian
increases until it saturates for the lowest pressures, see Figure 6.8(b).

These two features, non-Fickian dependence of the MSD on time and, more generally,
the non-Gaussian shape of the jump distribution form the base-line phenomena that must
be model in an effective, homogenized material if the scale-dependence is to be captured. As
noted in the introduction to this subsection, these are basic features of so-called Continuous-
Time Random walks and Generalized Master Equations. This can be seen in Figure ??
where half (for clarity) of the jump distributions from the p = 0.00004 case in Figure 6.9 are
compared with those calculated from the CTRW model given in [13].
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Figure 6.9. Jump distribution for p = 0.00004.

The model of [13] is developed for a very different system: glasses and jammed par-
ticulate systems. However, the phenomena on which it is based, so-called dynamical het-
erogeneity – an over-population of particles much faster and/or slower than the average –
seems very prevalent when dealing with transport in random, complex materials. In fact,
their model is built from a generalization of random walks known as continuous-time random
walk (CTRW). It is this modeling framework that is of interest to explore and exploit for
application to more general transport (thermal, electrical, momentum) in complex materi-
als. To this end, first note that the model of [13] captures the relative qualitative features as
already discussed above (see Figure ??); viz. the inner Gaussian core, shoulder in the jump
distribution, and the exponential stretching of the tail. This is done by convoluting two ba-
sic random walk process – Gaussian exploration of local environment and Gaussian hopping
between local environments. Initially, this sounds very similar to what might be expected
here where a walker explores its local particle until it “hops” into a neighboring particle.
However, one discrepancy can be seen at early times in Figure ?? where the shoulder in
the jump distribution appears too early for the model as compared with the numerical data
(details of the model and parameters used are given below). Nonetheless, from this qualita-
tive comparison, one can become emboldened to attempt to fit this same model to the jump
distribution data at hand. This is done following a similar procedure to that out lined in
[13]. Following, then, [13] the equation for what has been called here the jump distribution
can be written in Fourier-Laplace space as

P (q, s) = fvib(q)Φ1(s) + f(q)fvib(q)
φ1(s)Φ2(s)

s(1− φ2(s)f(q))
(6.0.4)
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(a) (b)

Figure 6.10. Compare data with model. This uses all four
parameters following Chaudhuri et al. l1 = d, l2 = r, τ1 =,
and τ2 =

where φ1,2 = 1 − sΦ1,2, f(q) = fvib(q)fjump(q), fvib = (2π`2)−3/2 exp(−r2/2`2), fjump =
(2πd2)−3/2 exp(−r2/2d2), φ1 = τ−1

1 exp(−t/τ1), and φ2 = τ−1
2 exp(−t/τ2). Again, these func-

tional forms represent a very simple model which aims to capture two simple features: (i)
random walk (i.e., diffusive) exploration of the local environment; and (ii) diffusive explo-
ration of the global structure through a random walk between local environments. One main
difference for the structures here is that they are static and do no relax or diffuse in contrast
to what might be expected in glassy structures. In any case the, it was found in [13] that
for a number of systems the two length scales in the distribution of hops, ` and d, were
proportional to each other, d ≈ 2`. Again, this seems to make sense here if we take ` = R,
where R is the radius of the particle and d = D = 1.0 where D is the particle diameter. Now
the walker explores the local environment of its initial particle characterized by a length
R and then “hops” between local environments separated by distances ∼ D. As for the
two time scales in equation 6.0.4, the simplest approach is to set them equal to each other
τ1 = τ2 = 1.0. These are parameter values for the results in Figure ??(b). Again, the right
qualitative features are present except for the earliest times where the shoulder appears too
early in the model. In Figure ??a, a more direct comparison of the model and simulation
data for intermediate to late times is made. Here it can be seen that the inner Gaussian
core is slightly narrower than the data; although decent semi-quantitative agreement is still
found otherwise. This agreement can be improved by a slight simplification of the model.

In equation 6.0.4 when τ1 = τ2 a simplification results

P (q, s) = fvib(q)

(
1− φ2(s)

s(1− φ2(s)f(q))

)
(6.0.5)

If instead of the convolution of the vibration and jump step distribution, f(q) = fvib(q)fjump(q),
in the denominator we take f(q) = fjump(q) only, then, with the same values for the param-
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(a) (b)

Figure 6.11. Compare model with model. (a) version 1
of model – all four parameters; (b) version 2 of the model –
three parameters/Montoll-Wiess CTRW with Gaussian ini-
tial condition.

eters as above, the model fits the data even better. This can be seen in Figure 6.10(b). In
this case, good quantitative agreement is seen for most of the intermediate to late time data.
The change is subtle, and reflects the fact that this particular model doesn’t quite capture
the short-time exploration of the constrained environment well. In fact, Equation 6.0.4 is a
standard CTRW formulation of the classical random walk process, which is due to Montroll
and Wiess [62], but with an initial distribution of walkers given by fvib.

Clearly, more work is required to resolve the details here, and the simulations certainly
provide the data necessary for this type of detailed analysis; however, to this point the
results are encouraging. Reasonable semi-quantitative agreement is found, particularly for
intermediate to late times. This suggest that further work based on modeling multi-scale
materials via CTRW or, equivalently [43] Generalized Master Equations would be fruitful.
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Chapter 7

Time Domain Thermoreflectance
(TDTR) Thermal Conductivity and
Interface Conductance Measurements

Here we begin to address the issue of transport at the interfacial scale. Up to this
point, little has been stated, but much has been assumed about the nature of transport
across material interfaces. Most of the aforementioned modeling has assumed “ideal” con-
tact between particles while in the actual phyrotechnic material two very different materials
can come into contact. Hence, this Chapter discusses thermal conductivity and interfacial
conductance measurements that were performed using the time domain thermoreflectance
(TDTR) technique. The TDTR method is briefly introduced and the SNL TDTR capabil-
ity described. The experimental samples for the measurements in this report consisted of
ammonium perchlorate (AP) crystals coated with aluminum. AP is used as a stand in for
potassium perchlorate as samples of single crystals were readily available and did not require
growing from scratch. The results of the TDTR measurements are presented and discussed.
To the best of the author’s knowledge, these are the first thermal boundary conductance
measurements for an aluminum-ammonium perchlorate interface measured using TDTR.

TDTR Technique

Time domain thermoreflectance (TDTR) is an optical experimental technique in which
ultrashort-pulse lasers are used in a pump-probe configuration [10, 11, 34, 35, 9, 95]. A pump-
probe thermoreflectance experiment allows the sample to be excited or heated by the pump
pulse and the change in the sample reflectance detected by the probe pulse. A schematic of
a typical TDTR experiment is shown in Figure 7.1, and a picture of the TDTR experiment
in Building 897/Room 2424 is in Figure 7.2. This LDRD supported reconstituting the
TDTR capability at Sandia National Laboratories in Albuquerque after a previous TDTR
experiment [35] was taken apart due to staff leaving and a facility move.

In the SNL TDTR experiment [34, 35], a Ti:Sapphire femtosecond laser pulse is split
into two optical paths: a pump and a probe path. The pump path is directed through
an electro-optic modulator that modulates the pump beam at a frequency f and then a
bismuth triborate (BiBO) crystal to frequency double the pump laser light. Thus, 800 nm
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Figure 7.1. Schematic for the time domain thermore-
flectance (TDTR) experiment.

Figure 7.2. Picture of the TDTR experiment in Building
897/Room 2424.
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Ti:Sapphire laser pulses are converted into 400 nm pulses. The pump laser pulses are then
directed through a microscope objective and focused on the sample. The 800 nm laser
energy directed down the probe optical path is sent down a mechanical delay stage and then
focused collinearly with the pump laser light onto the sample with the probe laser spot radius
being smaller than the pump laser spot radius to maintain one-dimensional heat transfer in
the sample perpendicular to the sample surface and reduce error due to probe laser spot
movement. The reflected probe laser beam is reflected from the sample back through the
objective, polarizing, and filtering optics onto a photodiode. The voltage signal from the
photodiode contains both a DC signal and a small AC signal representing the change in the
probe beam reflectivity due to pump beam heating at frequency f. A lock-in amplifier is
used to detect the small AC signal from the probe beam, and the in-phase and out-of-phase
components of the AC signal are monitored as a function of the delay between the pump and
probe beams created by the delay stage. After the initial increase due to the sample heating
from the pump pulse, the ratio of the in-phase to the out-of-phase voltage from the probe
pulse decays as a function of time. By fitting the decay curve, the thermal conductivity and
thermal boundary conductance for the sample can be determined.

Aluminum Coated Ammonium Perchlorate Samples

A smooth reflective surface is required for adequate signal-to-noise ratios for TDTR
measurements. Pressed powder pyrotechnics do not have smooth enough surfaces to be
coated with a metal film and have reflective enough surfaces for TDTR measurements. Thus,
crystals of representative materials were sought. While potassium perchlorate crystals were
not available, aluminum perchlorate (AP) crystals of sufficient size were obtainable. AP
pieces 1-3 mm in size were cleaved from parent crystals that were approximately 1 cm3 in
size. The parent crystals were slow grown and had no visible inclusions. The AP pieces
were adhered to a glass substrate and then coated with aluminum. Aluminum is a standard
transducer material for TDTR, and the change in its reflectance with temperature is known
[91]. Typically, an aluminum film of around 100 nm is deposited. Since the thickness of the
metal transducer is a key parameter in TDTR analyses, Al was also deposited on a substrate
without an AP crystal to use to confirm the Al film thickness. Images of the two AP samples
are shown in Figures 7.3 and 7.4 prior to and after Al coating. As observed in these images,
the surface for sample A is smoother and less terraced than that for sample B.

Experimental Data Analysis and Results

The two aluminum coated perchlorate samples were inserted into the TDTR experiment
and irradiated after the witness sample was used to verify the aluminum film thickness of
117 nm. This film thickness is also consistent with the echoes seen in the TDTR signal.
Figure 7.5 shows the decay of the in-phase to out-of-phase TDTR signal for sample A. There
are four scans on Figure 7.5 with two of them being at the same location and two more being
at other locations on the sample. The scans are very consistent and have echoes spaced at
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(a)

(b)

Figure 7.3. Microscope images of sample A: (a) prior to
and (b) after aluminum coating deposition.
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(a)

(b)

Figure 7.4. Microscope images of sample B: (a) prior to
and (b) after aluminum coating deposition.
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Figure 7.5. Ratio of the in-phase to out-of-phase TDTR
signal for four scans on sample A showing the initial increase
due to the pump pulse heating and subsequent decay.

36.5 ps, consistent with a 117 nm Al film.

Figure 7.6 shows five scans for sample A with delay times from 500 to 4000 ps. Again
the first two scans are collected at a single location and then the sample moved to new
locations prior to scans 3-5. The decay for the ratio of the in-phase to out-of-phase ratio of
the TDTR signal is fairly consistent. Table 1 lists the modulation and sample frequencies,
pump and probe powers, and pump and probe radii for the TDTR experiments that were
used to fit the thermal conductivities and thermal boundary conductances. In addition to
the Al film thickness of 117 nm, parameters that were specified when fitting the TDTR
data are the Al volumetric specific heat of 2.44 J/(cm3K) and Al thermal conductivity of
200 W/(mK) and AP volumetric specific heat of 2.125 J/(cm3K) and an initial value of the
AP thermal conductivity of 0.502 W/(mK). Since the decay in the in-phase to out-of-phase
voltage is most sensitive to interface thermal conductance at earlier times, the window for
the data analysis is varied and the results examined. The data was fit for the AP thermal
conductivity and thermal conductance between the Al and AP. For the sample A data shown
in Figure 7.6, analyzing the data from 500 to 4000 ps for the thermal conductivity resulted
in an AP thermal conductivity of 0.485 ± 0.024 W/mK. This value was then kept constant
and used to fit the decay data from 100 to 4000 ps to yield a thermal conductance value of
52 ± 17 mW/m2K. The thermal conductivity and interface thermal conductance results are
summarized in Table 2.
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Figure 7.6. Decrease in the ratio of the in-phase to the out-
of-phase signal for TDTR for sample A from 500 ps to 4000
ps and the model fit for a thermal conductivity of 0.485 ±
0.024 W/mK and thermal conductance of 52 ± 17 mW/m2K
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The results from sample B are also listed in Table 2. Note from Table 1 that sample B
was tested at both a modulation frequency of 11.3 MHz (scans 1-5) and a lower modulation
frequency of 5.89 MHz (scans 6-9). For sample B, scans 1 and 2 are at a set location and
the sample was again moved to new locations prior to scans 3-5. Also, scans 6 and 7 were
performed at the same location and the sample was moved prior to scans 8 and 9. It was
more difficult to find a location on sample B that provided good signal-to-noise than it had
been on sample A which was attributed to sample B being less smooth and more terraced
than sample A. For the 11.3 MHz modulation frequency experiments, the data was analyzed
from 2000 to 4000 ps to obtain an AP thermal conductivity of 0.476 ± 0.041 W/mK and
from 100 to 2000 ps to obtain a thermal conductance of 141 ± 63 mW/m2K. For the 5.89
MHz modulation frequency experiments, the data was analyzed from 1000 to 4000 ps to
obtain an AP thermal conductivity of 0.564 ± 0.035 W/mK and from 100 to 2000 ps to
obtain a thermal conductance of 90 ± 16 mW/m2K.

While the thermal conductivity for sample B is fairly consistent with that for sample A,
the thermal interface conductance is significantly higher. During the data analysis, the fits
to the sample B data were less satisfactory than those for sample A. Thus, the differences in
the interface resistances could indicate a lower quality interface between the Al and AP for
sample B compared to sample A. It is also possible that the sample B data was simply of
lower quality due to the surface condition. Another explanation is that the Al film thickness
varied across the sample and was not constant at 117 nm. The TDTR data analysis is
sensitive to the Al film thickness and variations in the Al film thickness would change the
results from the data analysis. More experiments are needed to definitively determine the
range of values for the interface thermal conductance between Al and AP.

Summary

Thermal conductivity and interface conductance were determined experimentally using
time domain thermoreflectance (TDTR) which measures the change in surface reflectance
due to a heating pulse and relates the change in the surface reflectance to the thermal
properties of the sample. Two ammonium perchlorate crystal pieces were coated with alu-
minum and investigated using TDTR. The TDTR experiments demonstrate the viability
of this technique for materials that are constituents in pyrotechnics and the potential for
determining thermal interface conductance between pyrotechnic powder constituents with
TDTR. When the TDTR experiment was operated at 11.3 MHz, the thermal conductivities
for the two samples were 0.485 ± 0.024 W/mK and 0.476 ± 0.041 W/mK. The thermal
interface conductances for the two samples were 52 ± 17 mW/m2K and 141 ± 63 mW/m2K.
The sensitivity to the interface thermal conductance was less than that to the thermal con-
ductivities. Future efforts are needed to more definitively establish the thermal boundary
conductance between ammonium perchlorate and aluminum although the measured values
are on the same order as that predicted numerically in section X.
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sample mod. freq. thermal conductivity thermal boundary conductance
(MHz) (W/mK) (mW/m2K)

A 11.3 0.485 ± 0.024 52 ± 17
B 11.3 0.476 ± 0.041 141 ± 63
B 5.89 0.564 ± 0.035 90 ± 16

Table 7.2. Table 2: AP Thermal Conductivity and Al/AP
Thermal Boundary Conductance
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Chapter 8

Thermal Boundary Conductance
Modeling

The existence of a finite thermal boundary conductance (TBC) between materials, even
at a structurally perfect interface, has been known since the work of Kapitza in 1941 [42]. In
recent years, interest in predicting this quantity has increased because device miniaturization
and integration often increases the relative importance of interface conductance compared
to its bulk counterpart.

In this work, the high heat fluxes created by burning pyrotechnic materials makes the
temperature field very sensitive to the interface conductance. A modeling effort was therefore
undertaken to predict the TBC between potassium perchlorate and titanium.

The diffuse mismatch model (DMM) [83] for predicting thermal boundary conductance
requires phonon information from both interacting materials. Various simplifying assump-
tions have been used in the past to make this model mathematically tractable. In contrast,
for this work, dispersion relations over the entire Brillouin zone are recovered from density
functional theory (DFT) calculations. This information is then used in the DMM to compute
thermal boundary conductance.

DFT Calculations

The calculations of the force constants are based on supercell approach with finite dis-
placements with the forces and energies obtained from electronic DFT calculations. In the
supercell approach [70], a periodic extension of the crystal structure is used. Finite displace-
ments of particular atoms are made and the resulting force on all of the atoms in the supercell
is determined. This provides the data for the determination of the force constants. Crystal
symmetry is used to limit the number of calculations. The use of periodic boundary condi-
tions is a computational convenience since most electronic structure codes assume periodic
systems, but it does introduce approximations. The supercell approach would be exact to
within numerical errors if performed on an infinite system. The periodic system implies that
all the periodic images of the displaced atom are also displaced. The effect of the periodic
boundary conditions can be systematically reduced by the use of larger supercells. Further,
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it can be shown [70] that the phonon properties computed at the reciprocal lattice vectors
of the supercell will be correct. The evaluation of the force constants and the subsequent
computation of the phonon properties was performed using the code PHONOPY [85, 84].

The calculation of the energy and forces is performed with the Vienna Ab Initio Sim-
ulation Package (VASP) [48]. This is a plane-wave code pseudopotential code. The pseu-
dopotentials employed here are of the projector augmented-wave (PAW) form and are taken
from the VASP pseudopotential database [49]. The k-space integrations are performed using
a Monkhorst-Pack (MP) [61] mesh. The mesh size was varied to obtain convergence of the
energy, forces and stresses. The computational details for each material will be described
below.

Phonon predictions were performed for Al, Si, Ti, and potassium perchlorate (KClO4).
Calculations were also attempted for ammonium perchlorate (NH4ClO4) but, as discussed
below, these calculations were not successful. The Al and Si calculations were performed
to facilitate the calculation of the conductivity at the well-studied Al-Si interface. The Ti
and potassium perchlorate calculations facilitate the determination of the phonon transport
between these two components of energetic materials.

Aluminum

The aluminum calculations were performed using the PAW pseudopotential from the
standard VASP library. This pseudopotential includes the outer three s- and p-electrons as
valence with the remaining electrons in the core. The plane wave cut-off energy employed
was 300 eV. The computational supercell is a 5x5x5 repeat of the cubic face-centered-cubic
(FCC) unit cell for a total of 256 atoms. The calculations employed a 12x12x12 MP k-space
mesh. The predicted lattice constant was 4.04 Å which agrees well with the experimental
lattice constant of 4.05 Å. The phonon calculations were performed at the experimental
lattice constant. The predicted total phonon density of states is shown in Figure 8.1 and
displays the typical shape for an FCC metal.

Silicon

The silicon calculations employed the PAW pseudopotential from the standard VASP
library. This pseudopotential includes the outer four s- and p-electrons as valence with the
remaining electrons in the core. The plane wave cut-off energy used in the calculations was
307 eV. The computational supercell is a 4x4x4 repeat of the cubic cell of the diamond
structure for a total of 512 atoms along with a 6x6x6 MP k-space mesh. The predicted
lattice constant from the DFT calculations was 5.47 Å compared to the experimental lattice
constant of 5.43 Å. The phonon calculations were performed for the experimental lattice
constants. The predicted total phonon density of states is shown in Figure 8.2.

128



Figure 8.1. Predicted phonon density of states for alu-
minum.

Figure 8.2. Predicted phonon density of states for silicon.
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Figure 8.3. Predicted phonon density of states for tita-
nium.

Titanium

The pseudopotential for the Ti calculations was of the PAW form and taken from the
standard VASP library. These pseudopotentials treat the four s- and d-electrons as valence
and the remaining electrons in the K core. The plane wave cut-off employed was 222 eV.
The computational supercell is a 6x6x6 repeat of the hexagonal-close-packed (HCP) cell for
a total of 432 atoms. The k-space integration was performed with a gamma-centered 3x3x1
MP mesh. The predicted lattice constant is a = 2.92 Å with c/a = 1.58. This compares to
the experimental lattice constant of a = 2.95 Å with c/a = 1.59. The phonon calculations
were performed for the DFT predicted lattice constants. The predicted total phonon density
of states is shown in Figure 8.3.

Potassium perchlorate

The pseudopotentials employed in these calculations are the PAW potentials taken from
the standard VASP library with 9, 7 and 6 valence electrons for K, Cl and O, respectively.
The plane-wave cut-off employed was 500 eV and is dictated by the O pseudopotential. The
structure was determined using a 24 atom orthorhombic unit cell and a 4x6x4 MP k-space
mesh. The phonon calculations employed a 2x3x2 repeat of the orthorhombic cell with 288
atoms and a 2x2x2 MP k-space mesh.

The structure of KClO4 has been determined experimentally by Mani [54] and by Jo-
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Figure 8.4. Predicted phonon density of states for potas-
sium perchlorate.

hansson and Lindqvist (JL) [40]. It is an orthorhombic crystal with four molecular units per
cell and Pnma symmetry. The experimental lattice constants are reported to be a = 8.83
Å, b = 5.65 Å and c = 7.24 Å by Mani and as a = 8.866 Å, b = 5.666 Å and c = 7.254 Å
by JL. The present DFT predictions are a = 9.05 Å, b = 5.77 Å and c = 7.40 Å. The DFT
predicts a larger lattice constants but the agreement is reasonable. The internal relaxation
parameters have also been measured and are obtained in the DFT structural optimization.
The results are compared in Table 8.1 where the positions are reported as fractions of the
relevant lattice constants. The agreement is good especially with the more recent results of
JL.

The predicted phonon density of states in shown in Figure 8.4. Note that the density
of states has a low frequency branch and several distinct higher frequency portions. The
partial density of states associated with each element is shown in Figure 8.5. The vibrations
associated with the K atoms are essentially restricted to the low frequency branch. The
higher frequency modes are associated with just O and Cl motion. This indicates that the
higher frequency modes are associated with internal vibrations of the perchlorate ion. As
such, they will have specific heat, but will not contribute to thermal transport.

Ammonium perchlorate

The crystal structure of ammonium perchlorate, NH4ClO4 is believed to be similar to
that of potassium perchlorate with the replacement of the potassium ion with an ammonia
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Figure 8.5. Predicted partial phonon density of states for
potassium perchlorate.

Atom DFT (present) JL (1977) Mani (1957)
X Y Z X Y Z X Y Z

K 0.182 0.75 0.161 0.181 0.75 0.163 0.183 0.75 0.167
Cl 0.434 0.25 0.190 0.432 0.25 0.190 0.425 0.25 0.189
O1 0.315 0.25 0.056 0.312 0.25 0.058 0.325 0.25 0.050
O2 0.577 0.25 0.102 0.575 0.25 0.098 0.578 0.25 0.106
O3 0.420 0.043 0.305 0.420 0.044 0.305 0.417 0.042 0.319
O4 0.420 0.457 0.305 0.420 0.456 0.305 0.417 0.458 0.319

Table 8.1. Comparison of internal relaxation parameters
for potassium perchlorate computed via DFT with previous
measurements.
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group [90]. Subsequent studies have examined the temperature dependence of the structure
at low temperatures [15, 72, 31]. These studies indicate that the rotational modes of the
ammonia ion are very easy and are significant at temperatures as low as 20 K. There is
disagreement about the presence of a low temperature phase transition. Prask and coworkers
[15, 72] assert that there is no change in the structure down to 10 K. Stammler, et al.
[81] suggest that there is a phase transition at 83 K based on changes observed in x-ray
diffraction with temperature. Hamada, et al. [31] note that there are anomalous changes
in the temperature dependence of the lattice constants around 80 K and that their x-ray
diffraction data at 80 K cannot distinguish between the centrosymmetric Pnma symmetry
observed at room temperatures and a noncentrosymmetric Pn21a symmetry. Thus the low
temperature structure of ammonium perchlorate is uncertain.

DFT structural optimizations were attempted based on the various experimental struc-
ture determinations. The structural optimizations algorithms in VASP had difficulty obtain-
ing minimum energy structures. This is consistent with the easy rotation of the ammonia
groups that was observed experimentally. Ultimately, apparent minimum energy structures
were obtained and the phonon analysis was performed. In each case, the phonon analysis
indicated negative frequency modes, in other words that the predicted structure was not
true minimum but probably a saddle point. This inability to obtain the true DFT minimum
energy structure prevented the determination of the phonon spectra. This failure could have
multiple causes. First, the initial structural guesses may not be sufficiently close to the
minimum to converge. Second, the calculations assumed Pnma symmetry which experiment
suggests might not be correct at low temperatures. Of course, if the zero temperature struc-
ture is not the room temperature structure, the phonon properties of the zero temperature
structure are not appropriate for the thermal transport at room temperature. This fail-
ure suggests that current DFT calculation techniques are not sufficiently robust to predict
phonon properties of complex crystal structures in some cases.

Diffuse Mismatch Model Calculations

Previous DMM calculations all simplified the dispersion relation in some way. In the
original DMM [83], the Debye approximation was used to replace all phonon polarization
with a single linear branch. Subsequent calculations used linear fits to the transverse and
longitudinal acoustic branches, then polynomial fits [21] to capture dispersion. Polynomial
fits to the optical branches were then added [4].

In all these calculations, the Brillouin zone was considered spherical, with the dispersion
relation in one direction applied to all directions. In the case of silicon, which has cubic
symmetry, this is a good approximation. Hopkins et al. [36], however, showed that a spherical
Brillouin zone is not a good assumption for sapphire, which has a Brillouin zone that is
better approximated by a cylinder. Supporting the theoretical result, Hopkins et al. showed
a measurable dependence of TBC on substrate crystallographic orientation for aluminum on
sapphire but not for aluminum on silicon.
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Breaking from these previous efforts, Reddy et al.[74] used a dispersion relation derived
from the Born-von Karman (BKM) lattice dynamical model to compute the TBC of metal-
semiconductor pairings of Al, Cu, Si, and Ge. In their case, the integrals usually employed
in DMM calculations were replaced by discrete sums, each taken over the discretized cells in
the k-space used in their BKM model.

The current work extends this effort by using the VASP calculations discussed in the
previous section to provide a detailed description of the phonon spectrum in the complex
materials of interest. This information is then processed using PHONOPY, which provides
a convenient means for extracting phonon information from VASP output. In particular, it
was used in this work to compute group velocities and the location and weights of “special”
points [61] in the Brillouin zone. These special points were then used to replace integration
over wavevector space with a sum. The relevant equations are therefore identical to those
employed by Reddy et al.[74] except that the (constant) discrete volume in k-space is replaced
by the special point weights.

The thermal boundary conductance, h is therefore given by:

h =
NakB

2fVm

∑
k,j

W | v · n | ζx2 ex

ex − 1
(8.0.1)

where the sums are taken over all wavevectors (k) and polarizations (j). v is the group
velocity, n is the normal to the interface, W is the weight of the special point, Na is Avo-
gadro’s constant, Vm is the molar volume and f is the number of formula units per unit cell,
which is required because PHONOPY calculates on a per unit cell basis. For convenience,
x is defined as ~ω

kBT
, where ~ is Planck’s constant divided by 2π, ω is the frequency, kB is

Boltzmann’s constant, and T is the temperature. All variables within the summation are
functions of wavevector and polarization, with the exception of W , which depends only on
wavevector.

Due to energy conservation, all quantities in Equation 8.0.1 except the transmission coef-
ficient, ζ, refer to only one of the two materials that make up the interface [83]. Subscripting
this material’s properties with a 1 and its partner’s properties with a 2, the transmission
coefficient is given by:

ζ(ω) =

∑
k,j | v2 · n | W2(k)δω′(k,j),ω

Vm2f2

Vm1f1

∑
k,j | v1 · n | W1(k)δω′(k,j),ω +

∑
k,j | v2 · n | W2(k)δω′(k,j),ω

(8.0.2)

where the delta functions enforce energy conservation on a per-frequency basis by requiring
the incoming and outgoing modes to have identical frequencies. This constraint is known as
elastic scattering and its implications are explored elsewhere [37, 23].
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(a) aluminum (b) silicon

Figure 8.6. Comparison of computed and measured acous-
tic phonon dispersion for aluminum and silicon in the (100)
direction.

Aluminum - Silicon

The aluminum-silicon material pair was chosen for testing the current computational
strategy because several previous authors [36, 74, 39, 38, 60, 22] have measured and/or
computed TBC for this pair.

Because the phonon wavevector-frequency relationship, or dispersion relation, is the basis
for computation under the DMM, these relations were first checked against their measured
counterparts using neutron scattering data from Stedman and Nilsson [82] and Dolling [20]
(as reported by Giannozzi et al.[27]) for aluminum and silicon, respectively.

Overall, good agreement between the computed and measured frequencies are evident.
For silicon, the relationship between computed and measured data follows the same trend
observed in earlier work by Giannozzi et al.[27], particularly the slight underprediction of
frequencies for the transverse acoustic (lower) branch.

These dispersion relations are then used to compute the transmission coefficient, ζ, using
Equation 8.0.2. The resulting transmission coefficient as a function of frequency is shown in
Figure 8.7 with the dispersion relations for reference. It may be observed that the optical
modes in silicon do not participate in energy transfer across the interface under the elastic
formulation expressed in Equation 8.0.2 because aluminum has no modes available in their
frequency range.

Computing the TBC for this material pair from Equation 8.0.1, the results are compared
to previous DMM calculations, as well as to measured data in Figure 8.8. The previous DMM
calculations use a polynomial fit to measured dispersion relations in one direction (Duda et
al. [22]) and an integration over a discretized full Brillouin zone derived from a Born-von
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Figure 8.7. Dispersion relations in the (100) direction for
silicon and aluminum, with the transmission coefficient for
an Al-Si interface between them.

Karman model (Reddy et al. [74]). The measurements were performed on an interface
in which steps were taken to remove the native oxide that is usually present on a silicon
surface before depositing the aluminum. The resulting interface is therefore a reasonable
approximation of the atomically sharp interface assumed in the model.

The agreement between the models and to the data is reasonable. While previous models
have underpredicted the TBC for this material pair, the current model overpredicts it. From
a physical standpoint, for a perfect model, overprediction is more reasonable because a real
interface will tend to have a lower conductance due to the presence of oxide, defects, and
atomic intermixing. Less than 1 nm of oxide would, for example, close the gap between the
current work and the data.

While it is tempting to declare victory at this result, it should be pointed out that the
DMM is not a perfect model and also that Duda et al. worked from measured dispersion
relations, which are reasonably simple and nearly direction-independent. A large difference
between their work and the current work is therefore not expected. (Reddy et al. did not
show a comparison between their dispersion relation and measured values, so it is difficult to
assess the accuracy of their lattice dynamics model.) Nonetheless, because the agreement is
certainly within the error bars imparted by uncertainties introduced by the physical system,
it provides sufficient confidence in the model to move on to the more complex materials of
interest, where previous models would be difficult to implement.
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Figure 8.8. Comparison of thermal boundary conductance
computed in the current work to previous DMM computa-
tions and measured values.

Aluminum - Potassium Perchlorate

The aluminum-potassium perchlorate system was modeled as a stand-in for the aluminum-
ammonium perchlorate system measured with TDTR, as described in Section 7. Due to the
difficulties in obtaining VASP results for ammonium perchlorate described in Section 8, as
well as a lack of neutron scattering data, a dispersion relation for ammonium perchlorate is
unavailable. It can be argued that its phonon spectrum should be at least somewhat similar
to that of potassium perchlorate.

The transmission coefficient for an aluminum-potassium perchlorate interface is shown
in Figure 8.9, along with the dispersion relations for each material. Unlike the Al-Si pair,
optical phonons are very important for transport in the Al-KClO4 pair, due to the very low
acoustic frequencies and the large number of optical modes in KClO4.

The computed TBC is shown in Figure 8.10. Given the large acoustic mismatch between
these materials, it is not surprising that the TBC is much lower than that observed for the
Al-Si pair. Reassuringly, the value at 300 K is within the range of measured values for the
aluminum-ammonium perchlorate pair presented in Section 7.
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Figure 8.9. Dispersion relations for aluminum and potas-
sium perchlorate with the transmission coefficient for an Al-
KClO4 interface between them. The potassium perchlorate
dispersion relation is truncated; It actually extends to nearly
32 THz.

Figure 8.10. Computed thermal boundary conductance
for aluminum on potassium perchlorate.
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Figure 8.11. Computed thermal boundary conductance
for titanium on potassium perchlorate.

Titanium - Potassium Perchlorate

The titanium-potassium perchlorate system was modeled because these interfaces are
present in the pyrotechnic devices of interest in the current work.

Following the template established in previous sections, the dispersion relations are paired
with the transmission coefficient in Figure 8.11. It may be noted from this figure that
titanium has optical modes with appreciable group velocities. Comparing its dispersion
relation to that of KClO4, however, it can be seen that these modes are unable to participate
in transport across the interface under the elastic assumption because their frequencies fall
entirely within one of the KClO4 bandgaps.

The computed TBC is shown in Figure 8.12. Comparing this figure to Figure 8.10, it can
be seen that titanium has a much larger TBC than aluminum when paired with potassium
perchlorate. This is somewhat surprising, given the slightly lower transmission coefficient
and titanium’s somewhat lower group velocity. The explanation may be found be comparing
the density of states for aluminum in Figure 8.1 to that of titanium in Figure 8.3. While
both materials have a similar structure to their density of states, titanium has a peak within
the KClO4 frequency range while aluminum does not. Titanium therefore has more carriers
available for transport across the interface.
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Figure 8.12. Computed thermal boundary conductance
for titanium on potassium perchlorate.
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Chapter 9

Summary and Conclusions

The goal of the project was to develop and apply a novel scale-consistent modeling
framework to couple spatial and temporal correlations from micro through meso to macro
scales for thermal transport in a particle-based composite material. Initially, we sought to
address the scale dependence of the temporal aspects of heat transport into powder (i.e., non-
Fickian, sub-diffusive behavior). Ultimately, success amounts to relating measures of spatial
inhomogeneity (e.g., microstructural correlation functions) to temporal response in order to
model time dependent bulk thermal conductivity. Moreover, success entails demonstration
of the models ability to capture spatial inhomogeneity as a function of resolution and account
for variability of effective properties.

Two related issues made full achievement of the goal a significant challenge. First, it
must be noted that above metric is poorly formed as stated in that it takes for granted the
rest of the significant work detailed in Chapters 2, 4 and 7 – experimental characterization
and discovery. Much was accomplished in these efforts. Chapter 7 summarizes the first ever
(as far as the authors know) application of TDTR to actual pyrotechnic materials. This is
the first attempt to actually characterize these materials at the interfacial scale. Chapter 4
describes sucess, although preliminary, in resolving thermal fields at speeds and spatial scales
relevant to energetic components, for the first time. Likewise, the FIB-SEM imaging referred
to in Chapter 5 is a first of its kind for these particular materials. As summarized in Chapter 2
a flash diffusivity capability for measuring homogeneous thermal conductivity of pyrotechnic
powders (and beyond) was advanced; leading to enhanced characterization of pyrotechnic
materials and properties impacting component development. In addition, modeling work
described in Chapter 8 led to improved prediction of interface thermal conductance from
first principles calculations, while advances were also made in image processing, meshing,
and direct numerical simulation of complex structures (see Chapters 3 and 5). Thus, the
original goal was too narrowly focussed on the modeling effort before allowing for the forming
of a clear multi-scale picture.

Second, as a result of the first point, in hindsight this metric was overly ambitious when
combined with the programmatic details of the project, particularly the short time line.
The breadth of the work described in the original technical approach seems accurate, but
the impact of the shortened timeline was to limit the integration of the various efforts;
tying them all back together after their initial parallel, shotgun start. Nonetheless, for a
model system of packed particles, significant headway was made in implementing numerical
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algorithms and collecting data to justify the approach in terms of highlighting the phenomena
at play and pointing the way forward (see Chapter 6) in developing and informing the kind
of modeling approach envisioned here.
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Appendix A

Table A.1. NanoFlash R© Machine Parameters for Each
TKP and THKP Pellet.

Pellet Energetic Temperature Shots Volts Flash Preamp Main Recording
Label Material (C) (V) Duration (µs) Gain Gain Time (ms)

IP-V-1-68-1 TKP-IP (Ventron) 24.58± 0.26 5 270 250 10 2520 4920
IP-V-1-68-2 TKP-IP (Ventron) 25.16± 0.43 5 270 250 10 2520 4920
IP-V-1-68-3 TKP-IP (Ventron) 25.18± 0.36 5 270 250 10 2520 4920
IP-V-1-71-1 TKP-IP (Ventron) 24.56± 0.28 5 270 250 10 2520 5376
IP-V-1-71-1 TKP-IP (Ventron) 49.92± 0.18 5 270 250 10 1260 5966
IP-V-1-71-1 TKP-IP (Ventron) 100.02± 0.18 5 270 250 10 623 5966
IP-V-1-71-1 TKP-IP (Ventron) 150.02± 0.18 5 270 250 10 315 7248
IP-V-1-71-1 TKP-IP (Ventron) 199.74± 0.42 5 270 250 10 155 8130
IP-V-1-71-1 TKP-IP (Ventron) 250.24± 0.30 5 270 250 10 155 8130
IP-V-1-71-2 TKP-IP (Ventron) 25.18± 0.36 5 270 250 10 2520 5376
IP-V-1-71-2 TKP-IP (Ventron) 49.96± 0.21 5 270 250 10 1260 6424
IP-V-1-71-2 TKP-IP (Ventron) 100.02± 0.19 5 270 250 10 623 6424
IP-V-1-71-2 TKP-IP (Ventron) 150.02± 0.19 5 270 250 10 315 6424
IP-V-1-71-2 TKP-IP (Ventron) 200.26± 0.51 5 270 250 10 155 8130
IP-V-1-71-2 TKP-IP (Ventron) 250.14± 0.32 5 270 250 10 78.8 8130
IP-V-1-71-3 TKP-IP (Ventron) 25.20± 0.64 5 270 250 10 2520 5376
IP-V-1-76-1 TKP-IP (Ventron) 25.38± 0.19 5 270 250 10 2520 4452
IP-V-1-76-2 TKP-IP (Ventron) 24.82± 0.88 5 270 250 10 2520 4452
IP-V-1-76-3 TKP-IP (Ventron) 24.82± 0.69 5 270 250 10 2520 4452
IP-V-1-79-1 TKP-IP (Ventron) 25.04± 0.57 5 270 250 10 2520 5186
IP-V-1-79-2 TKP-IP (Ventron) 24.84± 0.80 5 270 250 10 2520 5186
IP-V-1-79-3 TKP-IP (Ventron) 25.26± 0.28 5 270 250 10 2520 4668
IP-A-1-71-1 TKP-IP (ATK) 24.76± 0.35 7 270 250 10 2520 6048
IP-A-3-71-1 TKP-IP (ATK) 24.90± 0.30 5 292 450 10 5002 55672
IP-A-3-71-2 TKP-IP (ATK) 25.12± 0.36 5 292 450 10 5002 55672
IP-A-3-71-3 TKP-IP (ATK) 25.08± 1.30 5 292 450 10 5002 55672
OP-1-80-1 TKP-OP 25.08± 0.48 5 270 250 10 2520 5376
OP-1-80-2 TKP-OP 25.38± 0.39 5 270 250 10 2520 5376
OP-1-80-3 TKP-OP 25.30± 0.41 5 270 250 10 2520 4892

THKP-1-80-1 THKP 24.88± 0.26 5 270 250 10 2520 5478
THKP-1-80-2 THKP 25.12± 1.37 5 270 250 10 2520 5478
THKP-1-80-3 THKP 25.14± 0.40 5 270 250 10 2520 5478
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Table A.5. Comparisons of the Thermal Diffusivity in
mm2/s Found with Each Analysis Program for Each TKP
and THKP Formulation.

Pellet Energetic MATLAB R© Thermal Proteus R© Thermal Percentage
Label Material Diffusivity Diffusivity Difference

IP-V-1-68-1 TKP-IP (Ventron) 0.3076± 0.0024 0.2988± 0.0013 -2.95
IP-V-1-68-2 TKP-IP (Ventron) 0.3011± 0.0020 0.2888± 0.0015 -4.26
IP-V-1-68-3 TKP-IP (Ventron) 0.3015± 0.0031 0.2934± 0.0008 -2.75
IP-V-1-71-1 TKP-IP (Ventron) 0.3041± 0.0019 0.2964± 0.0016 -2.60
IP-V-1-71-2 TKP-IP (Ventron) 0.2932± 0.0040 0.2854± 0.0014 -2.75
IP-V-1-71-3 TKP-IP (Ventron) 0.3019± 0.0027 0.2964± 0.0016 -1.86
IP-V-1-76-1 TKP-IP (Ventron) 0.3753± 0.0054 0.3658± 0.0012 -2.61
IP-V-1-76-2 TKP-IP (Ventron) 0.3729± 0.0047 0.3624± 0.0020 -2.90
IP-V-1-76-3 TKP-IP (Ventron) 0.3660± 0.0042 0.3652± 0.0030 -0.23
IP-V-1-79-1 TKP-IP (Ventron) 0.4312± 0.0031 0.4212± 0.0023 -2.38
IP-V-1-79-2 TKP-IP (Ventron) 0.4494± 0.0056 0.4378± 0.0024 -2.65
IP-V-1-79-3 TKP-IP (Ventron) 0.4485± 0.0047 0.4408± 0.0023 -1.74
IP-A-1-71-1 TKP-IP (ATK) 1mm 0.2457± 0.0019 0.2420± 0.0009 -1.54
IP-A-3-71-1 TKP-IP (ATK) 3mm 0.2239± 0.0042 0.2248± 0.0026 0.41
IP-A-3-71-2 TKP-IP (ATK) 3mm 0.2151± 0.0066 0.2076± 0.0047 -3.63
IP-A-3-71-3 TKP-IP (ATK) 3mm 0.2074± 0.0113 0.2036± 0.0089 -1.86
OP-1-80-1 TKP-OP 0.3050± 0.0021 0.2964± 0.0014 -2.90
OP-1-80-2 TKP-OP 0.3290± 0.0045 0.3228± 0.0015 -1.93
OP-1-80-3 TKP-OP 0.3369± 0.0040 0.3314± 0.0018 -1.65

THKP-1-80-1 THKP 0.2964± 0.0040 0.2926± 0.0019 -1.29
THKP-1-80-2 THKP 0.3048± 0.0037 0.3042± 0.0018 -0.20
THKP-1-80-3 THKP 0.3159± 0.0025 0.3062± 0.0012 -3.16
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Table A.6. Comparisons of the Specific Heat in J/gK
Found with Each Analysis Program for Each TKP and THKP
Formulation Using the Pocographite Reference.

Pellet Energetic MATLAB R© Specific Proteus R© Specific Percentage
Label Material Heat Heat Difference

IP-V-1-68-1 TKP-IP (Ventron) 0.7297± 0.0243 0.7364± 0.0206 0.91
IP-V-1-68-2 TKP-IP (Ventron) 0.7813± 0.0205 0.7718± 0.0206 -1.23
IP-V-1-68-3 TKP-IP (Ventron) 0.7287± 0.0276 0.7362± 0.0177 1.02
IP-V-1-71-1 TKP-IP (Ventron) 0.8436± 0.0364 0.8540± 0.0354 1.22
IP-V-1-71-2 TKP-IP (Ventron) 0.7710± 0.0297 0.7804± 0.0371 1.21
IP-V-1-71-3 TKP-IP (Ventron) 0.8225± 0.0334 0.8454± 0.0346 2.71
IP-V-1-76-1 TKP-IP (Ventron) 0.7470± 0.0274 0.7586± 0.0130 1.53
IP-V-1-76-2 TKP-IP (Ventron) 0.7521± 0.0265 0.7610± 0.0190 1.16
IP-V-1-76-3 TKP-IP (Ventron) 0.7376± 0.0245 0.7520± 0.0285 1.91
IP-V-1-79-1 TKP-IP (Ventron) 0.7909± 0.0262 0.8066± 0.0375 1.94
IP-V-1-79-2 TKP-IP (Ventron) 0.7793± 0.0194 0.7922± 0.0379 1.63
IP-V-1-79-3 TKP-IP (Ventron) 0.7380± 0.0223 0.7602± 0.0127 2.91
IP-A-1-71-1 TKP-IP (ATK) 1mm 0.7388± 0.0302 0.7606± 0.0214 2.86
IP-A-3-71-1 TKP-IP (ATK) 3mm 0.8804± 0.0787 0.8500± 0.1087 -3.58
IP-A-3-71-2 TKP-IP (ATK) 3mm 0.9948± 0.0883 0.8774± 0.0884 -13.38
IP-A-3-71-3 TKP-IP (ATK) 3mm 0.9086± 0.1390 0.8256± 0.1194 -10.05
OP-1-80-1 TKP-OP 0.6530± 0.0177 0.6683± 0.0146 1.63
OP-1-80-2 TKP-OP 0.6445± 0.0235 0.6612± 0.0120 2.52
OP-1-80-3 TKP-OP 0.6498± 0.0268 0.6690± 0.0180 2.87

THKP-1-80-1 THKP 0.7120± 0.0240 0.7380± 0.0212 3.53
THKP-1-80-2 THKP 0.7274± 0.0322 0.7666± 0.0233 5.11
THKP-1-80-3 THKP 0.7675± 0.0289 0.7736± 0.0301 0.79
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Table A.7. Comparisons of the Specific Heat in J/gK
Found with Each Analysis Program for Each TKP and THKP
Formulation Using the Pyroceram R© Reference.

Pellet Energetic MATLAB R© Specific Proteus R© Specific Percentage
Label Material Heat Heat Difference

IP-V-1-68-1 TKP-IP (Ventron) 0.5967± 0.0211 0.5926± 0.0168 -0.69
IP-V-1-68-2 TKP-IP (Ventron) 0.6388± 0.0183 0.6210± 0.0164 -2.87
IP-V-1-68-3 TKP-IP (Ventron) 0.5958± 0.0229 0.5922± 0.0141 -0.61
IP-V-1-71-1 TKP-IP (Ventron) 0.6898± 0.0310 0.6874± 0.0282 -0.34
IP-V-1-71-2 TKP-IP (Ventron) 0.6304± 0.0259 0.6276± 0.0301 -0.45
IP-V-1-71-3 TKP-IP (Ventron) 0.6725± 0.0285 0.6780± 0.0274 -0.81
IP-V-1-76-1 TKP-IP (Ventron) 0.6108± 0.0239 0.6100± 0.0101 -0.13
IP-V-1-76-2 TKP-IP (Ventron) 0.6150± 0.0232 0.6126± 0.0150 -0.39
IP-V-1-76-3 TKP-IP (Ventron) 0.6031± 0.0216 0.6050± 0.0230 0.31
IP-V-1-79-1 TKP-IP (Ventron) 0.6467± 0.0232 0.6488± 0.0301 0.32
IP-V-1-79-2 TKP-IP (Ventron) 0.6372± 0.0174 0.6374± 0.0302 0.03
IP-V-1-79-3 TKP-IP (Ventron) 0.6035± 0.0191 0.6116± 0.0110 1.33
IP-A-1-71-1 TKP-IP (ATK) 1mm 0.6041± 0.0258 0.6120± 0.0168 1.29
IP-A-3-71-1 TKP-IP (ATK) 3mm 0.7496± 0.0676 0.7210± 0.0911 -3.97
IP-A-3-71-2 TKP-IP (ATK) 3mm 0.8470± 0.0758 0.7446± 0.0752 -13.75
IP-A-3-71-4 TKP-IP (ATK) 3mm 0.7736± 0.1185 0.7006± 0.1019 -10.42
OP-1-80-1 TKP-OP 0.5339± 0.0157 0.5326± 0.0138 -0.25
OP-1-80-2 TKP-OP 0.5270± 0.0203 0.5320± 0.0092 0.94
OP-1-80-3 TKP-OP 0.5313± 0.0227 0.5382± 0.0148 1.27

THKP-1-80-1 THKP 0.5821± 0.0210 0.5936± 0.0167 1.93
THKP-1-80-2 THKP 0.5948± 0.0274 0.6168± 0.0189 3.57
THKP-1-80-3 THKP 0.6275± 0.0253 0.6226± 0.0238 -0.79
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Appendix B

Verification of Random Walk Algorithm

As discussed in Section 6, the current implementation of the random walk algorithm
is sensitive to values of ∆xi. To verify the convergence of our simulations, we plot the
mean squared displacement as well as the scaling coefficient α for decreasing values of ∆xi

in Figure B.1. For the two smallest pressures tested (p = 4e-6 and p = 4e-7), we obtain
adequate convergence for ∆xi = 0.0005 and 0.0002, respectively. For higher pressures,
convergence is readily achieved with even larger values of ∆xi (data not shown). The data
discussed so far have been based on simulations that used a ∆xi value of 0.001 for p ≥ 0.0008;
∆xi = 0.0005 for 4e-6 ≤ p < 0.0008; and ∆xi = 0.0002 for p = 4e-7.

In order to verify that finite size effects of the jammed particle packs are not significant,
we plot the MSD and scaling coefficient α for several jammed configurations that contain
approximately 10,000 particles (10× more than the systems discussed so far). As seen from
Figure B.2, there are no effects on diffusion characteristics due to system size.
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h!
(a) Mean squared displacement.

(b) Scaling exponent α (MSD ∼ tα)

Figure B.1. Convergence of simulation results as a func-
tion of ∆xi. Both plots are magnified to show relevant re-
gions.
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h!
(a) Mean squared displacement.

(b) Scaling exponent α (MSD ∼ tα)

Figure B.2. Effects of system size on MSD(t) and α(t) at
several pressures. The legend entries labelled ‘XL’ correspond
to the systems containing ten times more particles than the
systems discussed so far.
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